CS|34:

INnheritance anc

Boarc

Class

Announcements & Logistics

HW 8 due today @ 10 pm
Lab 8 Autocomplete:

Focuses on OOP and program design
Multiple classes working together
Drawing pictures can be helpful
Lab 9 will be a two-week lab: strongly encourage you work in pairs
"Mini project” : different from standard labs in length/complexity

This week will be a build-up to the ideas used in Lab 9

Do You Have Any Questions?

L ast [Ime

 Designed a Library class that stores a sorted shelf of Book objects

« Learnt how to:

- call sorted () function in Python by specifying the key function
* how to pass a function as an argument to another function

» define/call functions with optional arguments

Jloday's Plan

- Continue discussing some of the important OOP principles
- Abstraction - handle complexity by ignoring/hiding messy details

* Inheritance - derive a class from another class that shares a set of
attributes and methods

* Encapsulation bundling data & methods that work together in a
class

* Polymorphism - using a single method or operator for different
USES

* Focus on Inherrtance

- Start implementing a text-based board game

xéo'
\,OJXO

\x:’JA
©

Inheritance Review

= = 7 \A- -

Inheritance: Constructor

class Rectangle:
def __init__ (self, length, width):

self._length = length
self. _width width

Parent (super class)

Calls constructor of

class Square(Rectangle):
super class

def __init_ (self, length):

super().__init__ (length, length)

Inheritance represents "is a" relationship.
A Square is a Rectangle.

Inheritance: Methods

class Rectangle:

def __init__ (self, length, width):
self._length = length
self._width = width

def draw(self):
print('draws a rectangle')

class Square(Rectangle):

def __init__ (self, length):
super().__init__ (length, length)

def draw(self):
print('draws a square')

sq = Square(12)

sq.draw() calls draw of square

"draws a square"

draw method of Square
overrides that of Rectangle

Inheritance: Methods

class Rectangle:

def __init_ (self, length, width):
self._length = length
self. _width width

def draw(self):
print('draws a rectangle')

class Square(Rectangle):

def __init__ (self, length):
super().__init__ (length, length)

draw(self):
print ()

sq = Square(12)
sg.draw()

"draws a rectangle”

If Square has no draw method,
it calls draw of super class

Inheritance and OOP:
word-based board games

= = 7 \A- -

SImple Board Games

Common Features of Physical Game!

Often 2 or many player
Board at the bottom

» Gnid-based (rows and columns)
Game pieces (tiles/cubes)

+ Go "on top" of the board

+ Have a letter (or many letters)
on them

Some uncertainty Is part of the fun
- Randomness in the configurations
Winning configuration

May or may not be timed

omputer Variants

You Computer
L ——— New Player
17 41 / BOGGLE ONLINE 0
(+11) (+19)
D .,

Select difficulty:] $ CURRENT GAME Ve WORD BANK

F,. i
TL m “ 33 7rT .~ SEAM FIT i MANE i
; E E E fie= tima e UNTIMED I TIM BJ EJ 5 §J
T, bW 7 D

il e Turn history CJ F J MJJ AJ

NEW GAME

TL 4

DI TN

| o P 1 e ST 'D 5 Iy EJ

Computer - 17 points

“ m m m E B m E?t@ 0%) LEARN v
m Submit

349 4:46 5:23 613 7:5 8:2

Tic Tac Toe Game

New Game

Common Features of Computer Variants!

Often | player (or play with computer)
Game board: now a graphical screen
- A grid area to place the pieces
- lext areas on the sides to give game status
- "Buttons” to reset/exit game
Some uncertainty Is part of the fun
- Randomness In the configurations
May or may not be timed

Other features!??!

-
RN~ [[[~ R

d [(ol [Jow[T [ow] [o []
SIIIIIIIIIIIIIII
4

ter

Turn history

Computer - 19 points

FIT (10)

M (4)

BOAT (5)

You - 11 points

MAE (11)

Computer - 17 points
IHIIIIHIIIEEEB S

@ oo

ppppp
RRRRRRRRRRR

MMMMMMMM

wwwwwwww

Reset

New Game

Exit

Example: Tic lac loe

Suppose we want to implement Tic Tac Toe

« Jeaser demo...

>>> python3 tttgame.py

X WINS!
X
O | X
O X

RESET EXIT

Decomposition

Let's try to identify the “layers’” of this game

Through abstraction and encapsulation, each layer can ignore what's
happening in the other layers

What are the layers of Tic Tac Toe!

Decomposition

Bottom layer: Basic board w/buttons, text areas, mouse click detection
(not specific to Tic Tac Toel)

Lower middle layer: Extend the basic board with Tic Tac Toe
specific features (3x3 grid, of T T TCubes, initial board state: all letters

start blank)

Upper middle layer: Tic Tac Toe “cubes” or “letters” (9 in totall); set
text to X or O

- Top layer: Game logic (alternating turns, checking for valid moves, etc)

Board class

Let’s start at the bottom: Board class

What are basic features of all game boards!

- Think generally...many board-based games have the similar

basic requirements

- (For example, Boggle, Ticlacloe,
Scrabble, etc)

Upper text area

Text area

Lower text area: hi!

RESET

EXIT

Boarc

Let’s start at the bottom: Board class

What are basic features of

Text areas: above, be

" all game boards:

class

ow, right of gric

Grid of squares of set size: rows x cols

Reset and Exit buttons

- React to mouse clicks (less obvious!)

Code for graphics Is a little messy

at times

» Lot's of things to specify: color; size,
location on screen, etc

hese are all graphical (GUIl) components

Upper text area

Text area

Lower text area: hi!

RESET

EXIT

INnheritance

Board (super class)

Generic board w/buttons, text areas, mouse click detection

[ic Tac Toe Board (sub class)

Inherits from Board and extends it to T T T specific features and
methods

Doesn't have to recreate a Board from scratch

L ooking ahead: Boggle (Lab 9)

Similar grid-based board game, also inherits
from Board and extends it to Boggle features
and methods

TTTCube

Graphics Module

= = 7 \A- -
LHEBEBIVS

Graphics Package for Boarc

We are going to use a simple graphics

>>> from gmphi cs import package to implement our game board
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400) 400 pixels
<
Create a window with title “Name’” and 4 © Name

size 400x400 (measured In pixels)

400 pixels

A pixel is one of the small dots or
squares that make up an image on a
computer screen. v

Graphics Package for Boarc

We are going to use a simple graphics

>>> from graphics import package to implement our game board
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400) 400 pixels
<
Create a window with title “Name’” and 4 © Name
size 400x400 (measured in pixels) (0,0)
400 pixels

Window coordinates (X, y)

A pixel is one of the small dots or
squares that make up an image on a

computer screen. v (4@@ ’ 4@@)

Graphics Package for Boarc

>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)

>>> # create circle w center at pt and radius 100
>>> Cc = Circle(pt, 100)

>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

Graphics Package for Boarc

>>> # create point obj at x,y coordinate i1n window
>>> pt = Point(200, 200)

>>> # create circle w center at pt and radius 100

>>> ¢ = Circle(pt, 100) Window coordinates (X,)

>>> # draw the circle on the window
>>> c.draw(win) (0,0)
Circle (Po1nt(200.0, 200.0), 100)

We can draw other shapes as well.

(200,200)
®

We'll want to draw Rectangles in our
Board class.

(0,400)

B |

(400,C

(400,4C

—/
N—"

Graphics Package for Boarc

>>> # set color to blue

>>> c.setFi1l1("blue™)

>>> # Pause to view result
>>> win.getMouse()
Point(76.0, 322.0)

>>> # close window when done

>>> win.close()

Detecting “events’ like mouse clicks are an
important part of a graphical program.

win.getMouse() is a blocking method call
that “blocks” or waits until a click is detected.

Board Class

Board

= = 7 \A- -

Board Class: Getting Started

inset
- Attributes: {

| XINSEt «—
» Graphical stuff;

_win: graphical window on which we will draw our board

_xinset: avoids drawing in corner of window

_yinset: avoids drawing in corner of window
_size: edge size of each square

« (Grid stuff:

_rows: number of rows 1in grid of squares
_cols: number of columns in grid of squares

- (We will add a few more attributes later)
- Need constructor and getters
- Need to make the grid, text areas, and buttons

- Might need some helper methods to organize our code

class Board:

_win: graphical window on which we will draw our board
_xinset: avoids drawing in corner of window
[55 < ‘ " # _yinset: avoids drawing in corner of window
Oarc aSS. # _rows: number of rows in grid of squares

_cols: number of columns in grid of squares

' ' # _grid: _ros x _cols grid of text rectangles for displaying letters

|n |'l: anC # _size: edge size of each square
__slots__ = [' _xinset', '_yinset', '_rows', '_cols', '_size', \

' grid', '_win', '_exit_button', '_reset_button', \

get-te rS '_text_area', '_lower_word', '_upper_word']

def __init__(self, win, xinset=50, yinset=50, rows=3, cols=3, size=50):
update class attributes
self._xinset = xinset; self._yinset = yinset
self._rows rows; self. cols = cols
self._size size
self._win = win
self._grid = []
self.make _board()

Notice the default values

getter methods for attributes
def get_win(self):
return self._win

def get_xinset(self):

return self._xinset yinset
def get_yinset(self): . t
return self._yinset Xinset «»

def get_rows(self):
return self._rows

def get_cols(self):
return self._cols

def get_size(self):
return self._size

def get_board(self):
return self

Board class: Making the gria

What are the features of the grid?
rows x columns num of rectangles of a certain size
offset from the top-left corner

Fach rectangle In the grid:
may need to have some text on It for specific games

but we'll leave it blank for now... .
yinset

Xinset «»

def

def

Board class: Making the gria

_make_rect(self, pointl, point2, fillcolor="white", text="", textcolor="black"):

"""Creates a rectangle with text in the center"""

rect = Rectangle(pointl, point2, fillcolor)
makes one TextRect at

text = Text(rect.getCenter(), text) coordinates
text.setTextColor(textcolor)

return TextRect(rect, text)

__make_grid(self):

"""Creates a row x col grid, filled with empty squares"""
for r in range(TODO):

for ¢ in range(TOD0): ~— how many rectangles glﬂse’t
create first point for the orid? ,
pl = TODO 5 Xinset <>
create second point
p2 = TODO
create rectangle and add to graphical window

self. grid[r]l[c] = self._make_textrect(pl, p2)

def

def

Board class: Making the gria

_make_rect(self, pointl, point2, fillcolor="white", text="", textcolor="black"):

"""Creates a rectangle with text in the center"""
rect = Rectangle(pointl, point2, fillcolor)

makes one TextRect at
text = Text(rect.getCenter(), text) coordinates
text.setTextColor(textcolor)

return TextRect(rect, text)

__make_grid(self):
"""Creates a row x col grid, filled with empty squares
for r in range(self._rows):

self. _grid.append([])

for ¢ in range(self._cols): yinset
create first point , t
pl = Point(self._xinset + self._size * c, Xinset <>

self._yinset + self._size x r)
create second point
p2 = Point(self._xinset + self._size *x (c + 1),
self._yinset + self._size x (r + 1))
create rectangle and add to graphical window
self._grid[r].append(self._make_textrect(pl, p2))

Board class: Making the gria

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares"""
for r in range(self._rows):
self._grid.append([])
for ¢ in range(self._cols):
create first point
pl = Point(self._xinset + self._size x* c,
self._yinset + self._size * r)
create second point
p2 = Point(self._xinset + self._size x (c + 1),
self._yinset + self._size x (r + 1))
create rectangle and add to graphical window
self. grid[r].append(self._make_textrect(pl, p2))

r=0, c=0:
pl: |1
xInset + (size x c) = xInset P .
yInset + (size *x r) = ylInset —7
p2: pZ////

xInset + size
yInset + size

xInset + (size * (c+1))
yInset + (size * (r+1))

Board class: Making the gria

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares"""
for r in range(self._rows):
self._grid.append([])
for ¢ in range(self._cols):
create first point
pl = Point(self._xinset + self._size x* c,
self._yinset + self._size * r)
create second point
p2 = Point(self._xinset + self._size x (c + 1),
self._yinset + self._size x (r + 1))
create rectangle and add to graphical window
self. grid[r].append(self._make_textrect(pl, p2))

r=0, c=1:
pl: 1
xInset + (size x c) = xInset + size P .
yInset + (size * r) = yInset T
p2: D2

xInset + 2 * size
yInset + size

xInset + (size * (c+1))
yInset + (size * (r+1))

Board class: Making the gria

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares"""
for r in range(self._rows):
self._grid.append([])
for ¢ in range(self._cols):
create first point
pl = Point(self._xinset + self._size x* c,
self._yinset + self._size * r)
create second point
p2 = Point(self._xinset + self._size x (c + 1),
self._yinset + self._size x (r + 1))
create rectangle and add to graphical window
self. grid[r].append(self._make_textrect(pl, p2))

r=0, c=2:
pl: D |

xInset + (size *x c) xInset + 2 x size

yInset + (size * r)

yInset | _—

p2: p2 T |

xInset + (size * (c+1)) xInset + 3 % size
yInset + (size x (r+l1)) = yInset + size

Board class: Making the gria

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares
for r in range(self._rows):
self._grid.append([])
for ¢ in range(self._cols):
create first point
pl = Point(self._xinset + self._size x* c,
self._yinset + self._size * r)
create second point
p2 = Point(self._xinset + self. size x (c + 1),
self._yinset + self._size x (r + 1))
create rectangle and add to graphical window
self. grid[r].append(self._make_textrect(pl, p2))

c=0, r=1:
pl:

xInset + (size * c) xInset

yInset + (size x r) = yInset + size p| ’
p2:
xInset + (size * (c+1)) = xInset + size n2

yInset + (size *x (r+l1)) = yInset + 2 % size

Board class: lext Areas

We need to make the grid, text areas, and buttons
Might need some helper methods to organize our code

Now let's draw the text areas (we need 3!)
» Text areas are just called Text objects in our graphics package

Can customize the font size, color, style,
and size and call “setText"” to add text

upper

right

lower

def

def

Board class: Making the lext Areas

We'll add attributes for the text areas:
_text_area, _lower_word, _upper_word

upper

__make_text_area(self, point, fontsize=18, color="black", text=""):

"""Creates a text area""" ront
text_area = Text(point, text)

text _area.setSize(fontsize)

text_area.setTextColor(color)

text_area.setStyle("normal") lower
return text_area

__make_text_areas(self):

"""Make text areas in the right/lower/upper side of main grid"""

main text area (right of grid)

self._text_area = self.__make_text_area(Point(self._xinset * self._rows + self._size x 2,
self._yinset + 50), 14)

the text area below grid

self._lower_word = self.__make_text_area(Point (160, 275))

the text area above grid

self._upper_word = self.__make_text_area(Point (160, 25), color="red")

Board class: Buttons

We need to make the grid, text areas, and buttons
Might need some helper methods to organize our code
Finally, let's draw the buttons!

Buttons are just more text rectangles. ..

RESET

Board class: Making Buttons

- Buttons are just rectangles with text on them

RESET EXIT

def _ _make buttons(self):
"""Create reset and exit buttons"""
pl = Point (50, 300); p2 = Point(130, 350)
self._reset_button = self._make_textrect(pl, p2, text="RESET")
p3 = Point (170, 300); p4 = Point (250, 350)
self. _exit_button = self._make_textrect(p3, p4, text="EXIT")

Board class: Drawing Graphics

Graphics objects do not appear until they are drawn on the window

» Each Graphics class has a draw() method that takes a single
argument: the Graphics window

def _ draw_buttons(self):
"""Draw reset and exit buttons"'"
self. _reset button.draw(self. win)
self. _exit button.draw(self._win)

def _ draw_text _areas(self):
"""Draw text areas"""
self. text area.draw(self. win)
self. lower word.draw(self. win)
self._upper_word.draw(self._win)

def __draw_grid(self):
"""Draw grid squares'""
for r in range(self._rows):
for ¢ in range(self._cols):

self._grid[r][c]l.draw(self._win)

Putting It all together

Upper text area

Text area

Lower text area:

RESET EXIT

Putting It all together

Upper text area

Text area

Lower text area:

RESET

def make_board(self):

"""Create the board with grid, text areas, and buttons

self.__make_grid()
self._ make_text_areas()
self.__make_buttons()

def draw_board(self):

"""Create the board with the grid, text areas, and buttons
self._win.setBackground("white smoke")

self.__draw_grid()
self. draw_text_areas()
self. draw_buttons()

EXIT

Board Helper Methods

= - xégo‘ = \ J/ %

Helper Methods

Now that we have a board with a grid, buttons, and text areas, it would
be useful to define some methods for interacting with these objects

Helpful methods!

Helper Methods

Now that we have a board with a grid, buttons, and text areas, it would
be useful to define some methods for interacting with these objects

Helpful methods!
Get grid coordinate of mouse click
Determine it click was in grid, reset, or exit buttons

Set text to one of 3 text areas

Note that none of this is specific to Tic Tac Toe (yet)!

Always good to start general and then get more specific

class Board(builtins.object)
| Board(win, xinset=508, yinset=50, rows=3, cols=3, size=50)

Methods defined here:

__init__(self, win, xinset=50, yinset=50, rows=3, cols=3, size=50)
Initialize self. See help(type(self)) for accurate signature.

Helper Methods

draw_board(self)
Create the board with the grid, text areas, and buttons

get_board(self)
get_cols(self)
get_grid_cell(self, row, col)
get_position(self, point)
Converts a window location (Point) to a grid position (tuple).
Note: Grid positions are always returned as row, col
Negative row or column values may be returned, indicating
that point falls outside of the grid area
get_rows(self)

get_size(self)

get_string_from_lower_text(self)
Get text from text area below grid.

|
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| -
| get_string_from_text_area(self)
| Get text from text area to right of grid.
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

>>> pydoc3 board

get_string_from_upper_text(self)
Get text from text area above grid.

get_win(self)
getter methods for attributes

get_xinset(self)
get_yinset(self)

in_exit(self, point)
Returns true if point is inside exit button (rectangle)

in_grid(self, point)
Returns True if a Point (point) exists inside the grid of squares.

PUbIIC IllethOdS! in_reset(self, point)

Returns true if point is inside exit button (rectangle)
make_board(self)

Create the board with the grid, text areas, and buttons

reset_grid_graphics(self)
Resets the text color and fill color of all cells to their
default values.

set_grid_cell(self, row, col, text, text_color='black', fill_color='whit

Update the graphical representation on a single grid cell

set_string_to_lower_text(self, text)
Set text to text area below grid. Overwrites existing text.

set_string_to_text_area(self, text)
Sets text to text area to right of grid. Overwrites existing text.

set_string_to_upper_text(self, text)
Set text to text area above grid. Overwrites existing text.

=) @ = Ny
=Y A mISI Ry PS/AWE

