
CS134:
Inheritance and Board Class

Announcements & Logistics
• HW 8 due today @ 10 pm

• Lab 8 Autocomplete:
• Focuses on OOP and program design

• Multiple classes working together
• Drawing pictures can be helpful!

• Lab 9 will be a two-week lab: strongly encourage you work in pairs
• "Mini project" : different from standard labs in length/complexity
• This week will be a build-up to the ideas used in Lab 9

Do You Have Any Questions?

Last Time
• Designed a Library class that stores a sorted shelf of Book objects

• Learnt how to:

• call sorted() function in Python by specifying the key function

• how to pass a function as an argument to another function

• define/call functions with optional arguments

Today’s Plan
• Continue discussing some of the important OOP principles

• Abstraction - handle complexity by ignoring/hiding messy details

• Inheritance - derive a class from another class that shares a set of
attributes and methods

• Encapsulation bundling data & methods that work together in a
class

• Polymorphism - using a single method or operator for different
uses

• Focus on inheritance

• Start implementing a text-based board game

Inheritance Review

class Rectangle:

 def __init__(self, length, width):

 self._length = length
 self._width = width

class Square(Rectangle):

 def __init__(self, length):

 super().__init__(length, length)

Inheritance: Constructor

Parent (super class)

 Inheritance represents "is a" relationship.
A Square is a Rectangle.

Calls constructor of
super class

class Rectangle:

 def __init__(self, length, width):
 self._length = length
 self._width = width

 def draw(self):
 print('draws a rectangle')

class Square(Rectangle):

 def __init__(self, length):
 super().__init__(length, length)

 def draw(self):
 print('draws a square')

Inheritance: Methods

sq = Square(12)

sq.draw()

"draws a square"

calls draw of square

draw method of Square
overrides that of Rectangle

class Rectangle:

 def __init__(self, length, width):
 self._length = length
 self._width = width

 def draw(self):
 print('draws a rectangle')

class Square(Rectangle):

 def __init__(self, length):
 super().__init__(length, length)

 def draw(self):
 print('draws a square')

Inheritance: Methods

If Square has no draw method,
it calls draw of super class

\

sq = Square(12)

sq.draw()

"draws a rectangle"

Inheritance and OOP:
 word-based board games

Simple Board Games

Common Features of Physical Game?
• Often 2 or many player
• Board at the bottom

• Grid-based (rows and columns)
• Game pieces (tiles/cubes)

• Go "on top" of the board
• Have a letter (or many letters)

on them
• Some uncertainty is part of the fun

• Randomness in the configurations
• Winning configuration
• May or may not be timed

Computer Variants

Common Features of Computer Variants?

• Often 1 player (or play with computer)
• Game board: now a graphical screen

• A grid area to place the pieces
• Text areas on the sides to give game status
• "Buttons" to reset/exit game

• Some uncertainty is part of the fun
• Randomness in the configurations

• May or may not be timed
• Other features???

Example: Tic Tac Toe
• Suppose we want to implement Tic Tac Toe
• Teaser demo…

>>> python3 tttgame.py

• Let’s try to identify the “layers” of this game
• Through abstraction and encapsulation, each layer can ignore what’s

happening in the other layers
• What are the layers of Tic Tac Toe?

Decomposition

• Bottom layer : Basic board w/buttons, text areas, mouse click detection
(not specific to Tic Tac Toe!)

• Lower middle layer : Extend the basic board with Tic Tac Toe
specific features (3x3 grid, of TTTCubes, initial board state: all letters
start blank)

• Upper middle layer : Tic Tac Toe “cubes” or “letters” (9 in total!); set
text to X or O

• Top layer : Game logic (alternating turns, checking for valid moves, etc)

Decomposition

Board

TTTBoard
TTTCube

Game

Board class
• Let’s start at the bottom: Board class
• What are basic features of all game boards?

• Think generally…many board-based games have the similar
basic requirements

• (For example, Boggle, TicTacToe,
Scrabble, etc)

Board class
• Let’s start at the bottom: Board class
• What are basic features of all game boards?

• Text areas: above, below, right of grid
• Grid of squares of set size: rows x cols
• Reset and Exit buttons
• React to mouse clicks (less obvious!)

• These are all graphical (GUI) components
• Code for graphics is a little messy

at times
• Lot’s of things to specify: color, size,

location on screen, etc

Board

TTTBoard
TTTCube

Game

Inheritance
• Board (super class)

• Generic board w/buttons, text areas, mouse click detection
• Tic Tac Toe Board (sub class)

• Inherits from Board and extends it to TTT specific features and
methods

• Doesn't have to recreate a Board from scratch
• Looking ahead: Boggle (Lab 9)

• Similar grid-based board game, also inherits
from Board and extends it to Boggle features
 and methods

Graphics Module

>>> from graphics import *
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400)

Graphics Package for Board

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400 pixels

400 pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

>>> from graphics import *
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400)

Graphics Package for Board

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400 pixels

400 pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

(0,0)

(400, 400)

Window coordinates (x, y)

Graphics Package for Board
>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)
>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)
>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)
>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)
>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

Graphics Package for Board

(0,0)

(0,400) (400,400)

(400,0)

(200,200)We can draw other shapes as well.

We’ll want to draw Rectangles in our
Board class.

Window coordinates (x, y)

>>> # set color to blue
>>> c.setFill("blue")
>>> # Pause to view result
>>> win.getMouse()
Point(76.0, 322.0)
>>> # close window when done
>>> win.close()

Graphics Package for Board
Detecting “events” like mouse clicks are an

important part of a graphical program.

win.getMouse() is a blocking method call
that “blocks” or waits until a click is detected.

Board Class

Board

• Attributes:
• Graphical stuff:

 # _win: graphical window on which we will draw our board
 # _xinset: avoids drawing in corner of window
 # _yinset: avoids drawing in corner of window
 # _size: edge size of each square

• Grid stuff:

 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares

• (We will add a few more attributes later)
• Need constructor and getters
• Need to make the grid, text areas, and buttons

• Might need some helper methods to organize our code

yinset
xinset

Board Class: Getting Started

class Board:
 # _win: graphical window on which we will draw our board
 # _xinset: avoids drawing in corner of window
 # _yinset: avoids drawing in corner of window
 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares
 # _grid: _ros x _cols grid of text rectangles for displaying letters
 # _size: edge size of each square

 __slots__ = ['_xinset', '_yinset', '_rows', '_cols', '_size', \
 '_grid', '_win', '_exit_button', '_reset_button', \
 '_text_area', '_lower_word', '_upper_word']

 def __init__(self, win, xinset=50, yinset=50, rows=3, cols=3, size=50):
 # update class attributes
 self._xinset = xinset; self._yinset = yinset
 self._rows = rows; self._cols = cols
 self._size = size
 self._win = win
 self._grid = []
 self.make_board()

 # getter methods for attributes
 def get_win(self):
 return self._win

 def get_xinset(self):
 return self._xinset

 def get_yinset(self):
 return self._yinset

 def get_rows(self):
 return self._rows

 def get_cols(self):
 return self._cols

 def get_size(self):
 return self._size

 def get_board(self):
 return self

Board Class:
__init__ and

getters

yinset

xinset

Notice the default values

• What are the features of the grid?

• rows x columns num of rectangles of a certain size

• offset from the top-left corner

• Each rectangle in the grid:

• may need to have some text on it for specific games

• but we'll leave it blank for now...

Board class: Making the grid

yinset

xinset

 def _make_rect(self, point1, point2, fillcolor="white", text="", textcolor="black"):
 """Creates a rectangle with text in the center"""
 rect = Rectangle(point1, point2, fillcolor)

 text = Text(rect.getCenter(), text)
 text.setTextColor(textcolor)

 return TextRect(rect, text)

Board class: Making the grid

 def __make_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for r in range(TODO):
 for c in range(TODO):
 # create first point
 p1 = TODO
 # create second point
 p2 = TODO
 # create rectangle and add to graphical window
 self._grid[r][c] = self._make_textrect(p1, p2)

makes one TextRect at
coordinates

how many rectangles
for the grid?

yinset

xinset

 def _make_rect(self, point1, point2, fillcolor="white", text="", textcolor="black"):
 """Creates a rectangle with text in the center"""
 rect = Rectangle(point1, point2, fillcolor)

 text = Text(rect.getCenter(), text)
 text.setTextColor(textcolor)

 return TextRect(rect, text)

Board class: Making the grid

 def __make_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for r in range(self._rows):
 self._grid.append([])
 for c in range(self._cols):
 # create first point
 p1 = Point(self._xinset + self._size * c,
 self._yinset + self._size * r)
 # create second point
 p2 = Point(self._xinset + self._size * (c + 1),
 self._yinset + self._size * (r + 1))
 # create rectangle and add to graphical window
 self._grid[r].append(self._make_textrect(p1, p2))

makes one TextRect at
coordinates

yinset

xinset

Board class: Making the grid

r=0, c=0:
p1:
xInset + (size * c) = xInset
yInset + (size * r) = yInset
p2:
xInset + (size * (c+1)) = xInset + size
yInset + (size * (r+1)) = yInset + size

p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for r in range(self._rows):
 self._grid.append([])
 for c in range(self._cols):
 # create first point
 p1 = Point(self._xinset + self._size * c,
 self._yinset + self._size * r)
 # create second point
 p2 = Point(self._xinset + self._size * (c + 1),
 self._yinset + self._size * (r + 1))
 # create rectangle and add to graphical window
 self._grid[r].append(self._make_textrect(p1, p2))

Board class: Making the grid

r=0, c=1:
p1:
xInset + (size * c) = xInset + size
yInset + (size * r) = yInset
p2:
xInset + (size * (c+1)) = xInset + 2 * size
yInset + (size * (r+1)) = yInset + size

p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for r in range(self._rows):
 self._grid.append([])
 for c in range(self._cols):
 # create first point
 p1 = Point(self._xinset + self._size * c,
 self._yinset + self._size * r)
 # create second point
 p2 = Point(self._xinset + self._size * (c + 1),
 self._yinset + self._size * (r + 1))
 # create rectangle and add to graphical window
 self._grid[r].append(self._make_textrect(p1, p2))

Board class: Making the grid

r=0, c=2:
p1:
xInset + (size * c) = xInset + 2 * size
yInset + (size * r) = yInset
p2:
xInset + (size * (c+1)) = xInset + 3 * size
yInset + (size * (r+1)) = yInset + size

p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for r in range(self._rows):
 self._grid.append([])
 for c in range(self._cols):
 # create first point
 p1 = Point(self._xinset + self._size * c,
 self._yinset + self._size * r)
 # create second point
 p2 = Point(self._xinset + self._size * (c + 1),
 self._yinset + self._size * (r + 1))
 # create rectangle and add to graphical window
 self._grid[r].append(self._make_textrect(p1, p2))

Board class: Making the grid

c=0, r=1:
p1:
xInset + (size * c) = xInset
yInset + (size * r) = yInset + size
p2:
xInset + (size * (c+1)) = xInset + size
yInset + (size * (r+1)) = yInset + 2 * size p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for r in range(self._rows):
 self._grid.append([])
 for c in range(self._cols):
 # create first point
 p1 = Point(self._xinset + self._size * c,
 self._yinset + self._size * r)
 # create second point
 p2 = Point(self._xinset + self._size * (c + 1),
 self._yinset + self._size * (r + 1))
 # create rectangle and add to graphical window
 self._grid[r].append(self._make_textrect(p1, p2))

• We need to make the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Now let’s draw the text areas (we need 3!)
• Text areas are just called Text objects in our graphics package

• Can customize the font size, color, style,
and size and call “setText” to add text

Board class: Text Areas

• We’ll add attributes for the text areas:
_text_area, _lower_word, _upper_word

Board class: Making the Text Areas

 def __make_text_area(self, point, fontsize=18, color="black", text=""):
 """Creates a text area"""
 text_area = Text(point, text)
 text_area.setSize(fontsize)
 text_area.setTextColor(color)
 text_area.setStyle("normal")
 return text_area

 def __make_text_areas(self):
 """Make text areas in the right/lower/upper side of main grid"""
 # main text area (right of grid)
 self._text_area = self.__make_text_area(Point(self._xinset * self._rows + self._size * 2,
 self._yinset + 50), 14)
 # the text area below grid
 self._lower_word = self.__make_text_area(Point(160, 275))
 # the text area above grid
 self._upper_word = self.__make_text_area(Point(160, 25), color="red")

• We need to make the grid, text areas, and buttons

• Might need some helper methods to organize our code
• Finally, let’s draw the buttons!

• Buttons are just more text rectangles…

Board class: Buttons

 def __make_buttons(self):
 """Create reset and exit buttons"""
 p1 = Point(50, 300); p2 = Point(130, 350)
 self._reset_button = self._make_textrect(p1, p2, text="RESET")
 p3 = Point(170, 300); p4 = Point(250, 350)
 self._exit_button = self._make_textrect(p3, p4, text="EXIT")

Board class: Making Buttons
• Buttons are just rectangles with text on them

 def __draw_buttons(self):
 """Draw reset and exit buttons"""
 self._reset_button.draw(self._win)
 self._exit_button.draw(self._win)

Board class: Drawing Graphics
• Graphics objects do not appear until they are drawn on the window

• Each Graphics class has a draw() method that takes a single
argument: the Graphics window

 def __draw_text_areas(self):
 """Draw text areas"""
 self._text_area.draw(self._win)
 self._lower_word.draw(self._win)
 self._upper_word.draw(self._win)

 def __draw_grid(self):
 """Draw grid squares"""
 for r in range(self._rows):
 for c in range(self._cols):
 self._grid[r][c].draw(self._win)

Putting it all together

Putting it all together

 def make_board(self):
 """Create the board with grid, text areas, and buttons"""
 self.__make_grid()
 self.__make_text_areas()
 self.__make_buttons()

 def draw_board(self):
 """Create the board with the grid, text areas, and buttons"""
 self._win.setBackground("white smoke")
 self.__draw_grid()
 self.__draw_text_areas()
 self.__draw_buttons()

Board Helper Methods

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it would

be useful to define some methods for interacting with these objects
• Helpful methods?

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it would

be useful to define some methods for interacting with these objects
• Helpful methods?

• Get grid coordinate of mouse click
• Determine if click was in grid, reset, or exit buttons
• Set text to one of 3 text areas
• …

• Note that none of this is specific to Tic Tac Toe (yet)!
• Always good to start general and then get more specific

Helper Methods

>>> pydoc3 board

Public methods!

The end!

