CS |34
Inheritance & sorted(..)

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Announcements & Logistics

HW 8 due Monday (on Gradescope)

Lab 8 is a partner lab : autocomplete

No prelab but do read the handout before arriving

Working with three classes, each in their own files

Good idea to use pencil/paper and map out the different

attri

Looking a

butes and methods

nead: Lab 9 will be an implementation of the game Boggle

Brings together all OOP concepts, and we get to "builld” a game

Do You Have Any Questions!?

L ast [Ime

- Built the Book class to represents book objects

- Learned about private, protected, public attributes and methods
(indicate scope using underscores in Python)

- Explored accessor (getter) and mutator (setter) methods in Python

» Talked about __1n1t__ (aka constructor) and __str__ methods

Jloday's Plan

» Design a Library class that stores a sorted shelf of Book objects

« Jools we need:

- sorted() function in Python (with optional parameter key)
* requires us to pass a function as a parameter

» first time using optional arguments in function/method calls

- Welll also review some useful string methods, including:

o
\,“0
xOJXO
)
CY—

+ s.split(), s.join(), s.format()

Detour: Bullt-In
sorted() function

B — .. @ m \ /&
SHPBABI

sorted()

- sorted() is a built-in Python function (not a method!) that takes a sequence
(string, list, tuple) and returns a new sorted sequence as a list

» By default, sorted () sorts the sequence in ascending order (for numbers)
and alphabetical order for strings

- sorted() does not alter the sequence it is called on and always returns the
type L1st

>>> nums = {42, -20, 13, 10, 0, 11, 18} # set of ints
>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

>>> letters = ['a', 'c', 'z', 'b', 'Z', ‘A']

>>> sorted(letters)

[IAI’ IZI’ Ial’ Ibl’ ICI’ IZI]

Changing the Default Sorting Behavior

+ To better understand the sorted () function, look at documentation

help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, |key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

- An iterable is any object over which we can rterate (list, string, tuple,
range)

+ The optional parameter key specifies a function or method that
determines how each element should be compared to other elements

 The optional boolean parameter reverse (which by default is set to
False) allows us to sort in reverse order

Reverse Sorting Example

- Let's consider the optional reverse parameter to sorted()

- Sort sequences In reverse order by setting this parameter to be True

>>> nums = [42, -20, 13, 10, 0, 11, 18]
>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a Key function

Suppose we want to sort a data type based on our own criteria

Example: A list of course lists, where the first item Is the course name,
second item is the enrollment capacity, and third item is the term (Fall/Spring).

courses [['CS134"', 90, 'Spring'], ['CS136', 60, 'Spring'l],
['AFR206', 30, 'Spring']l, ['ECON233', 30, 'Fall'l],

 'MUS112', 10, 'Fall'l], 'STAT200', 50, 'Spring'l,
['PSYC201', 50, 'Fall'l], '"MATH110', 90, 'Spring']]

Suppose we want to sort these courses by their capacity (second element)

- We can accomplish this by supplying the sorted () function with a key
function that tells it how to compare the tuples to each other

- This same logic applies to sorting objects of any class that we define

+ We can sort them based on a specific attribute

Sorting with a Key function

- Defining a key function explicitly:

» We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def get_capacity(course):

'''"Takes a course tuple and returns capacity'''
return course[1]

- We can pass this function as a key when calling sorted ()

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_ capacity)

Sorting with a Key function

sorted(seq, key=function)

Interpret as for el in seq: use function(el) to
determine where within sort order of seq that e L belongs

For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data

should be used for sorting

we can tell sorted() to sort by capacity instead
sorted(courses, key=get capacity)

For each course in courses (a list of lists), sort based on
value returned by capacity(course)

Exam

ble: Sorting with key

courses = [['CS134",

['AFR206"',
['MUS112",
| 'PSYC201', 50,

90,
30,
10,

def get _capacity(course):

'"'"Takes a course tuple and returns capacity

return course[1]

'Spring'],
'Spring'],
'Fall'],
'Fall'l],

'CS136°, 60,
'ECON233', 30,
'STAT200', 50,

'MATH110', 90,

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

[['MUS112', 10,
'AFR206', 30,
['ECON233', 30,
['STAT200', 50,
'PSYC201', 50,
['CS136', 60,
['CS134", 90,
'MATH110', 90,

'Fall'],

'Spring'],

'Fall'],

'Spring'],

'Fall'],
oring'],
oring' |
oring' |

'S
'S
'S

] -

'Spring'],
'Fall'l],

'Spring'],
'Spring']]

Sorting Obijects using kKey

Suppose we want to sort the Books in a list of Books using a specific
data attribute (such as author's name)

» We can use the "getter’” method for that attribute as our key argument

Caveat: Key needs to be a function that can be applied to every
object of the sequence, not a method that Is called on an individual
object

Fach method s a function that belongs to a given class

» The following are equivalent (left is method get_author called on

Book b, right: function Book.get_author called on Book b):
b = Book("Dune", "Herbert, Frank", 1965)

‘bl.get_author() ‘<—>‘Book. get_author(bl) ‘

Sorting Obijects using kKey

he following sorts a list of Book objects by their author's name

o use the “getter method” from the class Book as key, we need to use
the functional variant Book.get_author

- This function Is called on every Book object and the result is used as
the sorting criteria (author names)

sorted() returns a new list of Book objects arranged in the
alphabetical order of their author's name

sorted_books = sorted(list_of_books, key=Book.get_author)‘

Review: String Methods

= = 7 \A- -

Useful String Methods

Discover more str methods with pydoc3 str !
>>> 5 = " CSCI 134 1s great!\n \t"

?>> S5.ST rlp () ———— — Remove whitespace from left/right
CSCI 134 1s great! sides of the string S

>>> st = ['starry', 'starry', 'night']

>>> stars = 'sxx'.,join(1lst)

>>> stars .

! : | Joins all elements from list of str,
starry-«starry nlght Lst, using the leading str 'sx'

>>> stars.split('sx")

['starry', 'starry', 'niWSplits all elements from str stars,
using the str argument'**"

>>> "I have {} {} & {}
1+".format(2, 'cats',1, "dog")
'T have 2 cats & 1 dog.'

Inserts arguments into the { } in the
STr instance object.

Another Class Example

= = 7 \A- -

Another Example: Name Class

- Names of people have certain attributes
-+ Almost everyone has a first and last name
+ Some people have one (or more) middle name(s)

- We can create name objects by defining a class to represent these
attributes

- Then we can define methods, e.g., getting Initials of people’'s names, etc
- Let's practice some of the concepts using this class

__str__:how do we want the names to be printed!

* initials: can we define a method that returns the inrtials of
people's names!

Fxample: Name Class

class Name:
"""Class to represent a person's name.

def __init__(self, first, last, middle='"'):

2:%1]::::1 - r]rcnidrg{e \ Sets a default
self._l = last value, in case
middle name isn't
def __str__(self): | given!

1f the person has a middle name
if len(self._m) > 0:
return self. f[0] + '. ' + self. m[O] + '. ' + self._1

else:
return self. f[0] + '. ' + self. 1
>>> nl = Name("John", “Schmidt", “Jacob Jingleheimer™)
>>> nZ2 = Name("Paul"”, "Bunyan")

>>> print(nl)
J. J. Schmidt
>>> print(n2)
P. Bunyan

intials() methoc

Suppose we want to write a method that returns the person’s inrtials
as a string?

How would we do that!

Fxample: Name Class

class Name:
""Class to represent a person's name."""

def __init__(self, first, last, middle='"'):

self. f = first
self._m = middle
self. 1 = last

def initials(self):
if len(self._m) > 0:
return self. f[0] + '. ' + self. m[O] + '. ' + self. _1[0] + '.'
else:
return self. f[0] + '. ' + self._l[0] + '.'

def str_ (self):
1f the person has a middle name
if len(self._m) > 0:
return self. f[0] + '. ' + self. m[0] + '. ' + self._1
else:
return self._f[0] + '. ' + self._1

>>> nl = Name("John", “Schmidt", “Jacob Jingleheimer™)
>>> nl.initials()

'J. J. S.°

>>> n2 = Name("Paul", "Bunyan")

>>> n2.initials()

'‘P. B.'

INnheritance

INntroduction to Inheritance

Inheritance is the capablility of one class to derive or inherit the
properties from another class

 The benefits of inheritance are;
Often represents real-world relationships well

Provides reusability of code, so we don't have to write the same
code again and again

Allows us to add more features to a class wrthout modifying it

Inheritance Is transitive in nature, which means that if class B inherits
from class A, then all the subclasses of B would also automatically
inherit from class A

When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

Inheritance Example

» Suppose we have a base (or parent) class F1sh

» F1sh defines several methods that are common to all fish:
- eat(),swim()

- F1sh also defines several attributes with default values:

- _length,_weight, _lifespan

Inheritance Example

- All fish have some features in common

- But not all fish are the same!

» Each F1sh instance will specify different values for attributes
(_length, _weight, _Llifespan)

- Some fish may still need extra functionality!

Inheritance Example

For example, Sharks might need an attack() method
Pufferfish might need a puff() method

VWe might even want to override an existing method with a different
(more specialized) implementation

Inheritance allows for all of this!

class ferson

And Jeannie is Faculty

But Alex is actually a Student
And Stan is Staff

N

\
L |

get_name() get_name() get_name()

NN NN NN

class Perso

", —Aame
Different subclasses can have !

different attributes, methods get_name()

class|Student
O

_major |

get_major()

class gerson

Different subclasses can have
different attributes, methods

get_name()

class!Student clasleaculty

_major |

get_major()

i
=

get_dept()

class gerson

Different subclasses can have
different attributes, methods

get_name()

NN

class‘|5tudent clasleaculty class!Staff
1i|

_major |

I

'W
fulltime
§ cscr_

get_major() get_dept() get_status()

N NN SN

class Person

We want these subclasses to

inherit attributes, methods
from their parent class

class|5tude|:

1?

_name

get_name()

= 4

_major |

get_major()

N

class Faculty

B

'W

get_name()

name

get_name()

= 4

get_ dept(

NN

NN

classYStaff
O

'
i

name ‘

get_name()

= 4

fulltime

get_status()

SN

Inheritance: Syntax

INnheritance

When defining super/parent classes, think about the common features
and methods that all subclasses will have

In subclasses, inherit as much as possible from parent class, and add and/
or override attributes and methods as necessary

Consider an simple example:
Person class: defines common attributes for all people on campus

Student subclass: inherits from Person and adds additional
attributes for student's major and year

Faculty subclass: inherits from Person and adds additional
attributes for department and office

Staff subclass: iInherits from Person and adds additional attributes
for type/status of employee (full-time, part-time)

Person Class

class Person:

def __init__(self, name):
self._name = name

def get _name(self):
return self._name

def __str__(self):
return self. _name

Person

__hame
__init__(n)
get_name(): str
__str__(): str

class Student(Person):

def

def

def

def

def

Student Class

Our Student class inherits

from Person Notice this does not include the

inherited attribute _name since
that is already provided in Person

__init__(self, name, year, p):

call __init__ of Person e super class)
super().__init__ (name)

self._year = year

self._major = major

get_year(self):
return self._year

| This calls the __1nit__
get_major(self):
return self._major method of Person

set_major(self, major):
self._major = major

__str__(self):
return self. _name +',

+self. _major +', +str(self._year)

Person

__hame
__init__(n)
get_name(): str
__str__(): str

_year
_major

__init__(n, y, m)
get_year(): str
get_major(): str
set_major(m)
__str__(): str

Using the Student Class

>>> aglex = Student("Alex", 2026, "Math'")

>>> # 1nherited from Person
>>> alex.get_name()

'Alex’

>>> # defined 1n Student
>>> alex.get_major()

'Math'

>>> alex.set_major("CS")
>>> alex.get_major()

ICSI

>>> print(alex) This calls __Str__ of the Student class

'Alex, CS, 2026°

Faculty Class

Faculty inherits from Person Does not include the inherited
attribute _name from Person

\

class Faculty(Pekson):

def __init__(self, name, dept, office):
call __1nit__ of Person (the super class)

super().__init__(name)

self._dept = dept o
self. office = off} Calls the __1n1t__

method of Person

def get_dept(self):
return self._dept

def get _office(self):
return self. _office

Person

__nhame

__init__(n)
get_name(): str
__str__(): str

_year _dept

_major _office
__init__(n, y, m)

get_year(): str __init__(n, d, o)
get_major(): str get_dept(): str
set_major(m) get_office(): str

__str__(): str

Using the Faculty Class

>>> iris = Faculty("Iris","CS","TCL 308")

>>> # 1nherited from Person
>>> iris.get_name()

'Iris’

>>> # defined 1in Faculty

>>> jris.get_dept() This calls __str__ of the Person class
1 CS 0

>>> print(iris)

1ris

>>> iris.get_major()
AttributeError: 'Facu

- . et_majori thod of Student,
attribute 'get_major' ° JOF Is a method of studen

not Person, and it is not defined in
Faculty. This will not work.

Staff Class

class Staff(Person):
fulltime 1s a Boolean

def __init__(self, name, fulltime):
call __1nit _ of super class

super().__init__ (name)
self. fulltime = fulltime

def get_status(self):
9ot () Notice that getter methods

1f self._ _fulltime: .
Y . 5~ can do more than just return
return "fulltime . :
an attribute directly

return "parttime"”

Person

__nhame

__init__(n)
get_name(): str
__str__(): str

_year
_major

__init__(n, y, m)
get_year(): str
get_major(): str
set_major(m)
__str__(): str

_dept
_office

__init__(n, d, o)
get_dept(): str
get_office(): str

_fulltime

__init__(n, f)
get_status(): str

Using the Staft Class

>>> stan = Staff("Stan", False)

Zz> print(stan) — This calls __str _ of the Person class
an \

>>> stan.get_status()
'parttime’

Summary

Inheritance Is a very useful feature of OOP
Supports code reusability

One superclass can be used for any number of subclasses In a
hierarchy

Can change the parent class without changing the subclasses

More next time!

=) @ = Ny
=Y A mISI Ry PS/AWE

Library Class

= = 7 \A- -

Last Time: Book Class

"""This class represents a book with attributes title, author, and year"""

attributes: _title, _author, _year
def __init___(self, book_title, book_author, book_year):
self. _title = book title
self._author = book_author
self._year = int(book_year)

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

mutator (setter) methods
def set_title(self, book title):
self. _title = book title

def set_author(self, book_author):
self._author = book_author

def set_year(self, book_year):
self._year = int(book_year)

methods for returning book properties

def num_words_in_ title(self):
"""Returns the number of words in title of book"""
return len(self._title.split())

def years_since_pub(self, current_year):
"""Returns the number of years since book was published"""
return current_year - self._year

def same_author_as(self, other_book):
"""Check if self and other_book have same author"'""
return self._author == other_book.get_author()

Library Class

- Let's build a Library class that stores a collection of Books

« Data attribute:

 What methods!?

_books : collection of book objects

* What built-in collection data type to use?

* sorted, unsorted! mutable, immutable?

_Init__, str

 check out a book

* return a book

* |nvariant: shelves should remain in sorted order! III\\ '"IIIII

Library Class: Constructor

from book import Book .cite 2 new list containing the list of Book objects

passed when an object Is created
class Library:

'''"Represents a sort .d shelf of Book objects'''

def _init_ (self, list_of books=[]):
self. books = [b for b in list of books]

Calls __1nit__ on lib
| | object (passed to se L)
if _name__ == "_ main__":

creating book objects:
bl = Book('Pride and Prejudic- -~ 'Jane Austen', 1813)
b2 = Book('Emma', 'Jane Arsten', 1815)

b3 = Book("Parable of ‘«ne Sower", "Octavia Butler", 1993)
creating libraryv.-object

lib = Library([bl, b2, b3])

Library Class: __str

from book import Book
class Library:

'''Represents a sorted shelf of Book objects'''

Calls str special method on each Book object and
def str (self): accumulates them in a list

list_of _strings = []
for book 1n self._books:
list _of_strings.append(str(book))

return " | ".join(list_of_strings)
if name —= " main ": joins the string in L1st_of_strings together with
— — — — the connector string ™' | " in between each

creating book objects:
bl = Book('Pride and Prejudice', 'Jane Austen', 1813)

b2 = Book('Emma', 'Jane Austen', 1815)

b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
creating library object
lib = Library([bl, b2, b3])
print(lib)

Calls __str__ method on L1b object

Library Class: Other Methods

from book import Book

class Library:
'''"Represents a sorted shelf of Book objects

def checkout(self, title)
'''given title (str) of a book, checks if it
is in the library, if it 1s remove it and return True,
else return False'''
for book in self. books:
if book.get_title() == title:
self. books.remove(book)
return True
return False

List method that deletes the given
item from the list

Library Class: Other Methods

from book import Book

class Library:
'''"Represents a sorted shelf of Book objects

def shelve(self, book)
add the book back to the shelves

self. _books.append(book)

now the shelves might be out of order!

lets sort them by author name
self._books = sorted(self._books, key=Book.get_author)

To understand this, we need to review
sorted() function in Python

