CS|34:
Classes & Ob

Accessor & Mutato

ects

~ Methoc

Announcements & Logistics

Lab 7 due tonight/tomorrow at 10 pm
Make sure your images and values match the handout
HW 8 will be released today, due Monday at 10 pm
Lab 8 Is also a partner lab:
Fill out partner google form (from Lida) by tomorrow (@ noon
Every student has to fill out the form (both partners)

Must attend one lab session together

Mon lab due on Wed, Tue lab due on Thur

Final Exam: Wednesday, December | | at 9:30am in VWachenheim B |

Do You Have Any Questions!?

L ast [Ime

- Introduced the big idea of object oriented programming (OOP)

Everything in Python is an object and has a typel!
- We can create classes to define our own types
» Learned how to define and call methods on objects of a class

» first parameter in methods is always se LT (is a reference to the
object that the method Is called on)

« Quick aside: functions versus methods/’

Functions are not associated with a specific class

Methods are associated with a specific class and are invoked on
instances of the class (using dot notation)

Jloday's Plan

* Implement a simple Book class and learn about the following:

Learning about scope and naming conventions in Python

+ Using the __1n1t__() method to initialize objects with their
attribute values

Defining accessor and mutator methods to interact with
attributes

Implementing and invoking methods In general

Implementing __str__() method to provide meaningful print

xéo'
\,OJXO

\x:’JA
©

statements for custom objects

Defining Our Own lype: Book class

_title
Fellowship of
the Ring

_author

J.R.R. Tolkein

_year ‘

Specific instances of the
Book class

class Book

!!! —

_title
Pride and
Prejudice

_author

Jane Austen

_year

=
1513 MI'1o0s

Class definition provides a “blueprint”
for creating specific books and
specify attributes of books

_title
Parable of
the Sower

Providing values for
attributes of the

_author

e Book class, such as
title, author; and

Octavia

_year

year, define key

features of
individual instances

Defining Our Own Class: Book

Name of class (always capitalized by convention)

class Book:
"""This class represents a book"""

1ndented body of class
“== definition

Creating instances of the class:

bookl = Book() book1 is an instance of class Book

book2 = Book() —— book?2 is another (different) instance of class Book

Attributes

 Objects have state which is typically held in instance variables or (in
Pythonic terms) attributes

For the Book class, let's define attributes as

 title, _author, _year

- the leading underscore In the variable name indicates that they are
protected (these are not meant to used outside the class body)

Every Book instance has different attribute values!

In Python, we typically declare and initialize attributes in a special
function known as the constructor

» The constructor has a special name: __1n1t__ and is typically defined
at the top of the class before all other method definitions

Constructing objects with __1n1t__

Currently the constructor just inrtializes the attributes to some default
values

[deally, the constructor should take inputs just like any other function In
order to Iintialize the attributes to the desired values

class Book:
"""This class represents a book"'""

def __init_ (self) author, title,
self.author = "" andyear are
self.title = " _ attributes of
self.year = 0 the Book

class

Constructor: Defining __1n1t__

class Book:
"""This class represents a book"'""
attributes: author, title, year
def __init__ (self, book author, book_title, book_year):
self._author = book _author
self._title = book title

self._year = book_year Implicitly calls
__init_ (bookl, "Alcott",
"Little Women", 1869)

Creating instances of the class:
bookl = Book("Alcott", "Little Women", 1869)
book2 = Book("Tolkein", "Lord of the Rings", 1954)

Constructing objects with __1n1t__

+ The constructor now takes inputs, but the print function doesn’t allow
us to comprehend the contents of this object

- Jo get something more meaningful we need to define a string
representation for our object

class Book:
"""represents a book"""

def __init_ (self, book author, book _title, book year):
self._author = book_author
self._title = book_title

self._year = book_year

Class Methods

= = 7 \A- -

Methods and Data Abstraction

- |deally, we should not allow direct access to the object’s attributes:

>>> # creating book objects

>>> ps = Book('"Parable of the Sower", "Octavia Butler", 1993)
>>> ps._title

'"Parable of the Sower'

- Instead we control access to attributes through accessor and mutator
methods and avoid accessing the attributes directly

» Accessor methods: provide “read-only’ access to the objects
attributes (“'getter’ methods)

- Mutator methods: let us modify the object’s attribute values
(“setter’ methods)

- This is called encapsulation: the bundling of data with the methods that
operate on that data (another OOP principle)

class Book:
"""This class represents a book with attributes title, author, and year"""

_1nit__ 1s automatically called when we create new Book objects
we set the initial values of our attributes in __init
def _init (self, book _title, book author, book_year):
self._title = book _title
self._author = book _author
self._year = book_year

accessor (getter) methodg\\
def get_title(self):
return self._title

def get_author(self): N

return self. author
— N Accessor methods return values of

def get_year(self): attributes, but do not change them
\\; return self. year 4,)

mutator (setter) methods
def set title(self, book title):
self._title = book _title

def set _author(self, book author):
self._author = book _author

def set_year(self, book_year):
self._year = int(book_year)

class Book:
"""This class represents a book with attributes title, author, and year"""

_1nit__ 1s automatically called when we create new Book objects
we set the initial values of our attributes in __init
def _init (self, book _title, book author, book_year):
self._title = book _title
self._author = book _author
self._year = book_year

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

(() — —~ Mutator methods change the value of
mutator (setter) methods - .
o0 ser it leleels, hael el attributes but do not explicitly return

self. title = book_title anything

def set_author(self, book authoT)1
self._author = book _author

def set_year(self, book_year):
\\¥ self._year = int(book year)g//

Using Accessor/Mutator Methods

, Use accessor methods to get the
>>> pp.get_tit le() values of the attributes (when outside of

'Pride and P rej udice' class implementation)

>>> emma.get_author()

'Jane Austen’
Use mutator methods to set or change

=>=>> P5. get—yea I"() the values of the attributes (when outside
1993 of class implementation)

>>> ps.set_year(1991)
>>> ps.get_year()
1991

Aside:
Naming Conventions in Python

= = 7 \A- -

Scope & Naming Conventions in Python

* Double leading underscore (__) in name (strictly private):e.g. __value
- “Invisible” from outside of the class
* Strong “you cannot touch this” policy (which Is enforced)
* Single leading underscore (_) in name (private/protected): e.g. _value
- (Can be accessed from outside, but really shouldnt

“Don’t touch this (unless you are a subclass)” policy

* Most attributes in CS134 should start with a single underscore
* No leading underscore (public):e.g. value

- (Can be freely used outside class

* These conventions apply to methods names and attributes

Attribute Naming Conventions

class TestingAttributes():

def _ init (self):

self.__val = "I am strictly private.”
self. _val = "I am private but accessible from outside."
self.val = "I am public."”

>>> a = TestingAttributes()

>>> ad.__val

Y

Attributekrror: 'TestingAttributes' object has no attribute '__val'’

>>> a._val
'T am private but accessible from outside.’

>>> a.val . .
Note: Although we can access attributes directly
using dot notation, it's bad practice: should always use

methods to access/manipulate attributes

'T am public.’

Class Methods:
Morel!

= = i \ /&%

Detfining More Methods

» Beyond the accessor and mutator methods, we can define other
methods in the class definition of BOook to manipulate or answer
questions about our book objects:

- num_words_in_ title(): returns the number of words in
the title of the book

- years_since_pub(current_year): takes in the current
year and returns the number of years since the book was

published

- same_author_as(other_book) : takes another Book
object as a parameter and checks If the two books have the same
author

num words in title()

- Returns the number of words in the title of the book

class Book:

methods for manipulating Books

def num words in_title(self):
"H"HReturns the number of words in title of book"™™"
return len(self._title.split())

years_since_pub(current_year)

akes In the current year and returns the number of years since the
book was published

class Book:

def years_since pub(self, current_year):
"HHReturns the number of years since book was published"""
return current_year - self._year

same_author _as(other _book)

akes another Book object as a parameter and checks If the two
books have the same author

class Book:

def same_author_as(self, other _book):
""1Check 1f self and other_book have same author
return self._author == other_book.get_author()

class Book:
"""This class represents a book with attributes title, author, and year"""

__1nit__ 1is automatically called when we create new Book objects
we set the initial values of our attributes in __init _
def __init__ (self, book_title, book_author, book_year):
self._title = book_title
self._author = book_author
self._year = int(book_year)

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

mutator (setter) methods
def set_title(self, book_title):
self._title = book_title

def set _author(self, book_ author):
self._author = book_author

def set_year(self, book_year):
self._year = int(book_year)

methods for returning book properties

def num_words_in_title(self):
""1"Returns the number of words in title of book"""
return len(self._title.split())

def years_since_pub(self, current_year):
"""Returns the number of years since book was published"""
return current_year - self._year

def same_author_as(self, other_book):
"""Check if self and other_book have same author"""
return self._author == other_book.get_author()

Invoking Class Methods

- We invoke methods on specific instances of our class

» In this example, we are invoking Book methods on specific Book

objects | |
>>> # creating book objects

>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)
>>> emma = Book("Emma'", '"Jane Austen'", 1815)

>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps.num_words_in_title()

4

>>> emma.years_since_pub(2023)

208

>>> ps.years_since_pub(2023)

30

>>> ps.same_author_as(emma)

False

>>> emma.same_author_as(pp)

True

str__ :special method called by
orint

= - xégo' & \ /&%

Print Representation of an Object

class Book():

def __init_ (self, title):
self. _title title

By default, if we print an object,

>>> test = Book('"testing") .
the output is not helpful

>>> print(test)

<_main__.Book object at 0x105eecca0>

* Special method __str__ is automatically called when we ask to print a class object
In Python

str

must always return a string

* We can customize how the object is printed by writing a custom __Str__ method
for our class

- Very useful for debugging!

__str__ for Book class

What is a useful string representation of a Book?

Something that combines the attributes In a meaningful way

__str__ 1s used to generate a meaningful string representation for Book objects
__str__ 1s automatically called when we ask to print() a Book object

def str__(self):
return "'"+self._title+"', by "+self._author+", in "+ str(self._year)

» Now when we ask to print a specific instance of a BOOK, we get
something useful

>>> print(emma)

'Emma‘, by Jane Austen, in 1815

Other Special Methods

= = 7 \A- -

Other Special Methods

There are many other “special” methods in Python.

__eq__ (self, other): X y
__ne__ (self, other): X y
1t (self, other): X y
- gt (self, other): X y
__add__ (self, other) X Y
« sub_(self, other): X Yy
__mul__(self, other): X Y
- _ _truediv__ (self, other): X y
- __pow__(self, other): X y

» There are others, and we can reimplement any of these for our class!

Summary

» Today we built a simple BOOK class

(Briefly) Learned about about scope and naming conventions in Python

- Usedthe __init__ () method to initialize Book objects with their
attribute values

« Defined accessor and mutator methods to interact with attributes

and avoid accessing attributes directly

 Im

* Im

Note about mutators: If an attribute should not change, no need to
define a setter method for it!

blemented a few more “interesting” Book methods

blemented the __str__ () method so that we get meaningful

print statements for our Book objects

=) @ = N
=Y A mISI Ry PS/AWE

