
CS134 Lecture:
Introduction to

Classes & Objects

Announcements & Logistics
• Lab 7 today/tomorrow

• Do Pre-Labs individually and on paper

• Put your name on it!

• HW 7 due today at 10 pm
• Final Exam: Wednesday, December 11 at 9:30am in Wachenheim B11

Do You Have Any Questions?

Pair Programming: Best Practices
• Goal is to work together as a team using one computer:

• Driver : controls the keyboard (handles the details, debugging, etc)
• Navigator: helps guide (big picture person, decides where to go)

• Both roles are important and you both should switch roles often!

• Communication is key: but be polite, respectful and patient
• Discussing high level strategies and goals early, before writing the code,

helps avoid bugs as well as conflict
• Resources:

• How Pair Programming Really Works by Stuart Wray
• Longish article on pair programming pros, cons, and strategies

https://cs.wellesley.edu/~webdb/lectures/01-Overview/PairProgramming.pdf
https://martinfowler.com/articles/on-pair-programming.html

Last Time
• Graphical examples of recursion, important takeaways:

• how to break down a problem recursively
• maintaining function invariants across function calls

• Review leftover tree example (similar to shrub question in lab)

Today
• Start discussing our next topic: classes and objects

• Python is an object oriented programming (OOP) language
• Everything in Python is an object and has a type

• Learn how to define our own classes (types) and methods

Objects in Python

Objects in Python
• We have seen many ways to store data in Python

1234 3.14159 "Hello" [1, 5, 7, 11, 13] {1, 2, 3}
{"CA": "California", "MA": "Massachusetts"}

• Each of these is an object, and every object in Python has:

• a type (int, float, string, list, tuples, dictionaries, sets, etc)

• an internal data representation (primitive or composite)

• a set of functions/methods for interacting with the object

• Vocabulary: A specific object is an instance of a type

• 1234 is an instance of an int

• "Hello" is an instance of a string

type(object)
• The type() function returns the data type for an object

>>> type(1234)
<class 'int'>
>>> type("hello")
<class 'str'>
>>> type([1, 5, 7, 11, 13])
<class 'list'>
>>> type(range(5))
<class 'range'>

• Even functions are a type!

• Guido designed the language according
to the principle “first-class everything”

Everything in Python is an object and has a type!
“One of my goals for Python was to make it so that
all objects were "first class." By this, I meant that I
wanted all objects that could be named in the
language (e.g., integers, strings, functions, classes,
modules, methods, and so on) to have equal status.
That is, they can be assigned to variables, placed in
lists, stored in dictionaries, passed as arguments, and
so forth." — Guido Van Rossum
(Blog, The History of Python, February 27, 2009)

Objects and Types in Python

>>> def greeting():
... print("Hello")

...
>>> type(greeting)
<class 'function'>

Stepping Back:
Object-Oriented Programming (OOP)

• Python is an “object-oriented” language

• We have been dancing around this reality all semester

• Today we will embrace it!

• OOP (object-oriented programming) is a fundamental programming paradigm

• It has four major principles (vocabulary words!):

• Abstraction - handle complexity by ignoring/hiding messy details

• Inheritance - derive a class from another class that shares a set of
attributes and methods

• Encapsulation - bundling data and methods that work together in a class

• Polymorphism - using a single method or operator for different uses

• We’ll explore some of these principles in more detail in the coming lectures

What are Objects?
• It’s time to formally define objects in Python

• Objects are:

• collections of data (variables or attributes) and

• methods (functions) that act on the data

• Example of abstraction:

• Abstraction is the art of hiding messy details

• Methods define behavior but hide implementation and internal
representation of data

• e.g., .append() is a method that is applied to a list type: we
don't need to know how it works to use it

Example: [1,2,3,4] has type list
• We’ve never discussed how Python stores lists internally

• Fortunately we typically don’t sweat the inner working of lists every time we
use them (we’ve been doing it all semester!)

• How do we manipulate lists? Using the operators or list methods
provided by Python.

• list3 = list1 + list2 (concatenation using an operator)

• list1.append("dog") (adding to a list using the append operator,
this mutates list1 rather than creating a new list)

• Recall that we can also use the + operator for strings! This is an example of
polymorphism

• Take away: Internal representation of objects should be hidden from
users. Objects are manipulated through associated methods.

Example: [1,2,3,4] has type list
• We don’t really know how Python stores lists internally

• Fortunately we typically don’t sweat the inner working of lists every time we
use them (we’ve been doing it all semester!)

• How do we manipulate lists? Using the operators or list methods
provided by Python.

• list3 = list1 + list2 (concatenation using an operator)

• list1.append("dog") (adding to a list using the append operator,
this mutates list1 rather than creating a new list)

• Recall that we can also use the + operator for strings! This is an example of
polymorphism

• Take away: Internal representation of objects should be hidden from
users. Objects are manipulated through associated methods.

This is the same as list1+=["dog"] !!!

What are Methods?
• Methods are functions that operate only on the specific object instance

that comes before the dot notation with which they are called:

>>> l = ['mike', 'and']
>>> l.append('ike')
>>> l
['mike', 'and', 'ike']
>>> l.extend(['snap', 'crackle', 'pop'])
>>> l
['mike', 'and', 'ike',
 'snap', 'crackle', 'pop']
>>> l.reverse()
>>> l
['pop', 'crackle', 'snap',
 'ike', 'and', ‘mike']

appends a single item to the end of list l

Adds a sequence to the end of list l

Reverses the order of the list of list l

Some methods have arguments,
some don't. Just like functions!

What are Methods?
• Methods are functions that operate only on the specific object instance

that comes before the dot notation with which they are called:

>>> s = " CSCI 134 is great!\n \t"

>>> s.lower()

' csci 134 is great!\n \t'
>>> s.isalpha()
False
>>> s.strip()
'CSCI 134 is great!'
>>> s.strip()[0].isalpha()
True
>>> "a,b,c,d".split(',')
['a', 'b', 'c', 'd']

lowercases all characters in the string s

Is the string s made only of letters?

Remove whitespace from left/right
sides of the string s

Method calls can be combined, just
like function calls!

Discover more list & str methods with pydoc3 list or pydoc3 str !

Defining Our Own Types

Creating Our Own Types: Classes
• It’s time to move beyond just the built in Python objects!

• We can create our own data types by defining our own classes

• Classes are like blueprints for objects in Python

• Creating a class involves:

• Defining the class name, attributes, methods

• Using the class involves:

• Creating new instances of the class (which create specific objects)

• my_list = [1, 2],
my_other_list = list("abc")

• Performing operations on the instances through methods

• my_list.append(3)

Defining Our Own Type: Car class
Class definition provides a “blueprint”
for creating specific cars and specify

attributes of cars

Defining Our Own Type: Car class
Class definition provides a “blueprint”
for creating specific cars and specify

attributes of cars

Specific instances of the
Car class

Defining Our Own Type: Car class
Class definition provides a “blueprint”
for creating specific cars and specify

attributes of cars

Specific instances of the
Car class

Providing values for
attributes of the
Car class, such as
color, make, and

model, define key
features of

individual instances

Defining Our Own Type: Book class
Class definition provides a “blueprint”

for creating specific books and
specify attributes of books

Specific instances of the
Book class

Providing values for
attributes of the

Book class, such as
title, author, and
year, define key

features of
individual instances

• Methods are defined as part of the class definition and describe how to
interact with the class objects

• Example: Recall the following methods for the list class

Defining Methods of a Class

dot notation to “call” the
method on the object

>>> lst = list()
>>> lst.extend([1,2,3])
>>> lst
[1, 2, 3]
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]

• On the previous slide, we called methods like append() and
extend() on a particular list object lst.

• We can define methods in our classes in a similar way

• Consider this simple example:

Defining Methods of a Class

class SampleClass:
 """Class to test the use of methods"""
 def greeting(self):
 print("Hello")

Class name (note the use of
CamelCase by convention)

• To create methods that can be called on an instance of a class, they
must have a parameter which takes the instance of the class as an
argument

• In Python, the first parameter of a method is always self, and is

used as a reference to the calling instance

class SampleClass:
 """Class to test the use of methods"""
 def greeting(self):
 print("Hello")

All methods include self
as the first parameter.

Defining Methods of a Class

• How do we call the greeting method?

• We create an instance of the class and call the method on that
instance using dot notation:
>>> sample = SampleClass()

>>> sample.greeting()
Hello

Our First Method

sample is an instance of
SampleClass

Invoke the greeting()
method on sample

class SampleClass:
 """Class to test the use of methods"""
 def greeting(self):
 print("Hello")

Mysterious self Parameter
• Even though method definitions have self as the first parameter, we

don’t pass this parameter explicitly when we invoke the methods

• This is because whenever we call a method on an object, the object
itself is implicitly passed as the first parameter

• Note: In other languages (like Java) this parameter is implicit in method
definitions but in Python it is explicit and by convention named self

• Take away:

• When defining methods, always include self

• When calling (invoking) methods, the value for self is passed
implicitly (meaning, we don’t specify it, but it happens automatically)

Mysterious self Parameter
• In interactive python:

• (the id(..) function which returns the identity/address of the object)

>>> class Sample():
... def __init__(self):
... print(id(self))

>>> s = Sample()
4404099008

>>> id(s)
4404099008

self is the instance we are applying
the method to!

Summary of Classes and Methods
• Classes allow us to define our own data types

• We create instances of classes and interact with those instances using
methods

• All methods belong to a class, and are defined within a class

• A method’s purpose is to provide a way to access/manipulate instances
of the class)

• The first parameter in the method definition is the reference to the

calling instance (self)

• When invoking methods, this reference is provided implicitly

Example: Defining Our Own Class

• Key features of a class:
• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), it’s important to

identify what attributes are required and what actions will be
performed using those attributes (methods)

• For example, suppose we want to define a new Book class
• Attributes?

• Methods?

Defining Our Own Class: Book

• Key features of a class:
• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), it’s important to

identify what attributes are required and what actions will be
performed using those attributes (methods)

• For example, suppose we want to define a new Book class
• Attributes?

• Title, author, publication year, genre, …
• Methods?

• same_author_as(), years_since_pub(), …

Defining Our Own Class: Book

Creating instances of the class:

book1 = Book()

book2 = Book()

class Book:

 """This class represents a book"""

indented body of class
definition

Defining Our Own Class: Book

book1 is an instance of class Book

Name of class (always capitalized by convention)

book2 is another (different) instance of class Book

Attributes
• Objects have state which is typically held in instance variables or

(in Pythonic terms) attributes.

• Example: For our Book class, these include the book’s title, author, and
publication year

• Every Book instance has different attribute values!

• In Python, we typically declare and initialize attributes in a special
function known as the constructor

• The constructor has a special name — __init__ — and is typically
defined at the top of the class before all other method definitions

Constructing objects with __init__

• Currently the constructor just initializes the attributes to some default
values

• Ideally, the constructor should take inputs just like any other function in
order to initialize the attributes to the desired values

class Book:
 """This class represents a book"""

def __init__(self):
self.author = ""
self.title = ""
self.year = 0

author, title,
and year are
attributes of

the Book
class

A Modification To Our Previous Constructor
class Book:

 """This class represents a book"""

 # declare Book attributes

def __init__(self, book_author, book_title, book_year):

self.author = book_author

self.title = book_title

self.year = book_year

The arguments are the
same as arguments for a

function.

Constructing objects with __init__

• The constructor now takes inputs, but the print function doesn’t allow
us to comprehend the contents of this object

• To get something more meaningful we need to define a string
representation for our object

class Book:
 """This class represents a book"""

def __init__(self, book_author, book_title, book_year):

 """ The constructor """
self.author = book_author

self.title = book_title

self.year = book_year

>>> lotr = Book("J.R.R. Tolkein", "Lord of the Rings", 1954)
>>> lotr.year
1954
>>> print(lotr)
<__main__.Book object at 0x108255f30>

__str__ method for Book Class
class Book:

def __init__(self, book_author, book_title, book_year):

 """ The constructor """
self.author = book_author

self.title = book_title

self.year = book_year

def to_string(self):

 """ Method that defines string
 representation of book objects
 """

return "'"+self.title+"', by "+self.author+", pub. "+ str(self.year)

>>> lotr = Book("J.R.R. Tolkein", "Lord of the Rings", 1954)
>>> print(lotr.to_string())
'Lord of the Rings', by J.R.R. Tolkien, pub. 1954

But wouldn't this be more convenient if we could just
print(lotr) or str(lotr)? (foreshadowing!!)

Next up
• So we have attributes and methods
• What actually happens when we create a new instance of a class?
• More on this (and more!) next time

The end!

Lab 7: Recursion

Lab 7 Overview
• Recursion + Graphical Recursion!

• Before submitting, make sure you've generated the correct image files
according to the instructions using

• python3 runtests.py final

• When working with a partner:
• Don't both edit the same file at the same time
• BUT you can edit different files!

• When done, git add+commit+push

• Then your partner can either git clone with those edits

• Or git pull if they've already git cloned the repo

Choose one person to be the
"driver".
Then trade off who types!

Lab 7 Overview
• Pre-lab exercise: sum_digits(num)

• Similar to sum_list(num_lst), from class, but with a twist!

• Bedtime Story

• Similar to count_up and count_down from class, but with a big twist!

• Recursive Squares

• Similar to concentric_circles, from class, but with a twist!

• Square quilt

• Similar to nested_circles, from class, but with a twist!

• Read the handout carefully. Make sure you draw all four quadrants!
• Shrub

• Similar to tree, from class, but with a twist!

Gradescope with a Partner
• Only submit one lab for your group!

Select 'Group Members' to add your partner!

Gradescope with a Partner
• Only submit one lab for your group!

Pair Programming

Working with a Partner
• "Pair Programming" (or programming with a partner) is an Agile

software development technique from Extreme Programming
• It's used in the real world!
• Produces better solutions than produced individually!
• Spreads knowledge!

• It's good to be able to talk through complex ideas with someone else
before diving into implementation details

• Benefit from both partners' knowledge of problem-solving &
debugging

git with a Partner

Repository or “repo”

Pair Programming: One person "drives",
take turns who uses keyboard/mouse

recursive.py

Discuss your design ideas with your partner!!
Identify bugs & bug fixes together!

git with a Partner

Repository or “repo”

Jigsaw Programming:
Two partners, two different Python files!

recursive.py

Discuss your design ideas with your partner!!
Identify bugs & bug fixes together!

runtests.py

git with a Partner

Repository or “repo”

Jigsaw Programming:
Two partners, two different Python files!

BoggleLetter.py

Discuss your design ideas with your partner!!
Identify bugs & bug fixes together!

BoggleBoard.py

If an editor opens up saying
files were merged: that's

okay, just save & exit
("Ctrl+x" and then "y")

git with a Partner

DO NOT WORK ON THE SAME
FILE AT THE SAME TIME!

There will be frustration!
And suffering!

And Lida will probably have to save you!

DO: Talk to your partner a lot!

VS Code Live Share can handle this:
https://learn.microsoft.com/en-us/visualstudio/liveshare/

(if you can set it up on your own!)

https://learn.microsoft.com/en-us/visualstudio/liveshare/

Git Reminders
• If machine doesn't have the repo, git clone the repo

• Grab URL from https://evolene.cs.williams.edu/ (or Lida's email)

• git clone <URL HERE>
• git add/commit/push frequently, as you get work done

• To grab your partner's edits, git pull

• (if you've already git cloned the repo)

• If you have not git cloned the repo, then git clone

https://evolene.cs.williams.edu/

Git Workflow Reminder
• Starting a work session:

• Always pull most recent version before making any edits (clone if using a new
machine)

• Middle of a work session:
• Commit changes to all files first (git commit -am "message") commits changes to

all files already on evolene
• After commit, pull again to get your partner's edits
• If an editor opens up saying files were merged: that's okay, just save & exit

("Ctrl+x" and then "y")
• Then push your edits to evolene (can check evolene to make sure it worked)

• Do the above steps (commit, pull, push) frequently
• Can check status anytime by typing git status
• Let us know if you face any issues!

Do You Have Any Questions?

