CSI34: More Recursion

Jourd Jecorating Party Ex

Join Women in

Computer

Science + UnICS

for a

Announcements & Logistics

- Lab 6 (Dictionaries) Due today/tomorrow
 - WATCH THE LECTURE VIDEO ON DICTIONARIES
- **HW 6** on Gradescope will be released today
- Lab 7, 8, and 9 are **partner labs**
 - Pair programming is an important skill as well as a vehicle for learning
 - Fill-out the **partner form** Lida emailed Monday
 - Due THURSDAY/TOMORROW

Do You Have Any Questions?

LastTime

- Introduction to recursion
 - Alternative to iteration
 - New problem solving paradigm
- Function frame model to understand recursion behind the scenes

Last Time: Recursive Approach to Problem Solving

- A recursive function is a function **that calls itself**
- A recursive approach to problem solving has two main parts:
 - **Base case(s).** When the problem is **so small**, we solve it directly, without having to reduce it any further
 - **Recursive step.** Does the following things:
 - Performs an action that contributes to the solution
 - Reduces the problem to a smaller version of the same problem, and calls the function on this smaller subproblem
- The recursive step is a form of "wishful thinking" (also called the inductive hypothesis)

Today's Plan

- [More] practice translating recursive ideas into recursive programs
- Examining the relationship between **recursive** and **iterative** programs
 - That is, how do recursive ideas relate to the iterative ideas (for loops, while loops) we've covered so far?

More Recursion: count_up

count_up(n)

- Write a recursive function that prints integers from 1 up to n
- Recursive definition of count_up:
 - Base case: n == 1, print(n) # last time!
 - Recursive rule: call count_up(n-1), print(n)

<pre>>>> count_up(5)</pre>	<pre>>>> count_up(4)</pre>	<pre>>>> count_up(3)</pre>
1 2 3 4 5	1 2 3 4	1 2 3

count_up(n)

- Unlike **count_down(n)** the print statement is **after** the recursive function call (*why*?)
- By printing **after** the recursive call, the print statement gets executed "on the way back" from recursive calls

Function Frame Model to Understand Count_up

Recursion GOTCHAs!

GOTCHA #1

- If the problem that you are solving recursively is not getting smaller, that is, you are not getting closer to the base case ---infinite recursion!
- Never reaches the base case

```
def count_down_gotcha(n):
    '''Prints ints from 1 up to n'''
    if n == 1: # Base case
        print(n)
    else: # Recursive case
        print(n)
        count_down_gotcha(n)
```

GOTCHA #2

 Missing base case/unreachable base case--- another way to cause infinite recursion!

"Maximum recursion depth exceeded"

 In practice, the infinite recursion examples will terminate when Python runs out of resources for creating function call frames, leads to a "maximum recursion depth exceeded" error message

Recursion vs. Iteration: sum_list

sum_list

- Goal: Write a function to sum up a list of numbers
- Iterative approach? (i.e., using loops?)

Iterative Approach to sum_list

- Goal: Write a function to sum up a list of numbers
- Iterative approach:

```
def sum_list_iterative(num_lst):
    sum = 0
    for num in num_lst:
        sum += num
    return sum
```

```
>>> sum_list_iterative([3, 4, 20, 12, 2, 20])
61
```

sum_list

- Goal: Write a function to sum up a list of numbers
- Recursive approach?

Recursive approach to sum_list

- Base case:
 - num_lst is empty, return 0
- Recursive rule:
 - Return first element of num_lst plus result from calling sum_list on rest of the elements of the list.
- Example: Suppose $num_lst = [6, 3, 6, 5]$
 - $\cdot sum_list([6, 3, 6, 5]) = 6 + sum_list([3, 6, 5])$
 - sum_list([3, 6, 5]) = 3 + sum_list([6, 5])
 - $sum_list([6, 5]) = 6 + sum_list([5])$
 - sum_list([5]) = 5 + sum_list([])
- For the base case we have sum_list([]) returns 0

Recursive approach to sum_list

- Base case:
 - num_lst is empty, return 0
- Recursive rule:
 - Return first element of num_lst plus result from calling sum_list on rest of the elements of the list.
- Example: Suppose $num_lst = [6, 3, 6, 5]$
 - sum 20 ([6, 3, 6, 5]) = 6 + sum [4] ([3, 6, 5])
 - sum |4|([3, 6, 5]) = 3 + su || st([6, 5])
 - sum [] ([6, 5]) = 6 + s 5 ist([5])
 - sum 5 ([5]) = 5 + 0 list([])
- For the base case we have sum_list([]) returns 0

Recursive approach to sum_list

```
def sum_list(num_lst):
    """Returns sum of given list"""
    if not num_lst:
        return 0
    else:
        return num_lst[0] + sum_list(num_lst[1:])
```

```
>>> sum_list([3, 4, 20, 12, 2, 20])
61
```

Compare sum_list approaches

```
def sum_list_iterative(num_lst):
    sum = 0
    for num in num_lst:
        sum += num
    return sum
```

```
def sum_list(num_lst):
    if num_lst == []:
        return 0
    else:
        return num_lst[0] + sum_list(num_lst[1:])
```

Why Recursion?

What's The Big Deal With Recursion?

- Why choose recursion over iteration?
- The recursive solution can be more elegant, resulting in fewer lines of code
- Fewer lines of code often correlates with less debugging!
- Let's consider a simple real world example

A Simple Real World Task

- Consider trying to find a key that is lost in a pile of boxes within boxes.
- (This task is quite similar to trying to find a file on your computer!)

Credit to Aditya Bhargava for the nice illustrations

Comparing Approaches To Finding The Key

• In this case, it's much easier to describe the algorithm using a recursive approach

Iterative Approach

Recursive Approach

Similar: Searching For A File On Our Computer

Similar: Finding a Word in a Dictionary

Finding a File: Iterative

```
def file_found_iterative(files, target):
    """
    Iterative function that returns True if the list of files
    contains the target file and False otherwise.
    """
    for file in files:
        if file == target:
            return True
    return False
```

```
>>> files = ["homework", "puppy", "films"]
>>> file_found_iterative(files, "puppy")
True
>>> file_found_iterative(files, "kitten")
False
```

Finding a File: Recursive

```
def file_found(files, target):
    """
    Recursive function that returns True if the list of files
    contains the target file and False otherwise.
    """
    if files == []:
        return False
    else:
        return files[0] == target or file_found(files[1:], target)
>>> files = ["homework", "puppy", "films"]
```

```
>>> file_found(files, "puppy")
True
>>> file_found(files, "kitten")
False
```

Compare file_found approaches

```
def file_found_iterative(files, target):
    for file in files:
        if file == target:
            return True
        return False
```

```
def file_found(files, target):
    if files == []:
        return False
    else:
        return files[0] == target or file_found(files[1:], target)
```


Finding a File in Nested Structures: Iterative

```
def file_found_iterative(folder, target):
    # create an initial list or pile of files/folders to look through
    pile = []
    for item in folder:
        pile+=item
    # keep looking while the pile isn't empty
    while len(pile) > 0:
        # get and remove the last item from the pile
        item = pile[-1]
        pile = pile[:-1]
        # if the item is a folder (list) add each item
        # inside the folder onto the pile
        if type(item) == list:
            for obj in item:
                pile += obj
        # otherwise check if the current file is our target
        elif item == target:
```

```
return True
```

return False

Finding a File in Nested Structures: Iterative

```
def file_found_iterative(folder, target):
             # create an initial list or pile of files/folders to look through
             pile = []
             for item in folder:
                 pile+=item
             # keep looking while the pile isn't empty
             while len(pile) > 0:
                 # get and remove the last item from the pile
                 item = pile[-1]
                 pile = pile[:-1]
                 # if the item is a folder (list) add each item
                 # inside the folder onto the pile
                 if type(item) == list:
                     for obj in item:
                         pile += obj
                 # otherwise check if the current file is our target
                 elif item == target:
                     return True
             return False
>>> nested_folders = ["homework", ["cat", "puppy", "goat"], ["films", "books"]]
>>> file found(nested folders, "puppy")
True
>>> file_found(nested_folders, "poems")
False
```

Finding a File in Nested Structures: Recursive

```
def file_found(folder, target):
    # base case
    if folder == []:
        return False
    else:
        first_item = folder[0]
        # check if the first item is a folder (list), if so, recurse
        if type(first_item) == list and first_item != []:
             return file_found(first_item, target) or
                                file found(folder[1:], target)
        # otherwise, item is a file name, so we check if it's our
        # target, or if the remaining files/folders contain our target
        return first_item == target or file_found(folder[1:], target)
 >>> nested_folders = ["homework", ["cat", "puppy", "goat"], ["films", "books"]]
 >>> file_found(nested_folders, "puppy")
 True
 >>> file_found(nested_folders, "poems")
```

```
False
```

Compare file_found approaches

```
def file_found_iterative(folder, target):
    # create an initial list or pile of files/folders to look through
    pile = []
    for item in folder:
        pile+=item
   # keep looking while the pile isn't empty
   while len(pile) > 0:
        # get and remove the last item from the pile
        item = pile[-1]; pile = pile[:-1]
        # if the item is a folder (list) add each item
        # inside the folder onto the pile
        if type(item) == list:
            for obj in item:
                pile += obj
        # otherwise check if the current file is our target
        elif item == target:
            return True
    return False
```

```
def file_found(folder, target):
    if folder == []: # base case
        return False
    else:
        first_item = folder[0]
        # check if the first item is a folder (list), if so, recurse
        if type(first_item) == list and first_item != []:
            return file_found(first_item, target) or file_found(folder[1:], target)
        # otherwise, item is a file name, so we check if it's our
        # target, or if the remaining files/folders contain our target
        return first_item == target or file_found(folder[1:], target)
```

More Examples

- The easiest way to understand recursion is to first see examples of it
- Let's start by examining a familiar recursive definition in mathematics
- The set of natural numbers can be defined as follows:
 - 1 is a natural number
 - If \mathbf{n} is a natural number, then $\mathbf{n+1}$ is a natural number
- Building blocks of a recursive idea:
 - I. Base case(s): 1 is a natural number
 - 2. Recursive rule(s): If **n** is a natural number, then **n+1** is a natural number

- How would you define the concept of exponentiation a^n as a base case and a recursive rule (assuming $n \ge 0$)
- A recursive definition:
 - Base case:
 - Recursive rule:

- How would you define the concept of exponentiation a^n as a base case and a recursive rule (assuming $n \ge 0$)
- A recursive definition:
 - Base case: $a^0 = 1$
 - Recursive rule: $a^n = a * a^{n-1}$

Translating Recursive Ideas To Programs

- Recursive definition for **a**ⁿ:
 - Base case: $a^0 = 1$
 - Recursive rule: $a^n = a * a^{n-1}$

```
def power(a, n):
    """
    Returns a^n. Assumes n >= 0.
    """
    if n == 0:
        return 1
    else:
        return a * power(a, n-1)
>>> print(power(5, 0))
>>> print(power(5, 4))
1
625
```

- Similarly, how would you define the concept of factorial n! as a base case and a recursive rule (assuming $n \ge 0$)
- A recursive definition:
 - Base case: 0! = 1
 - Recursive rule: n! = n * (n-1)!

Translating Recursive Ideas To Programs

- Recursive definition for **n!**:
 - Base case: 0! = 1
 - Recursive rule: n! = n * (n-1)!

```
def factorial(n):
    """
    Returns a!. Assumes n >= 0.
    """
    if n == 0:
        return 1
    else:
        return a * factorial(n-1)
    >>> print(factorial(1))
    >>> print(factorial(5))
    1
    120
```

- Let's examine a more complicated series known as the Fibonacci sequence.
- The Fibonacci sequence is a series of numbers that starts with **0** and **1**, and where each successive number is the sum of the two preceding ones

- A recursive definition:
 - Base cases: $F_0 = 0$ and $F_1 = 1$
 - Recursive rule: $F_n = F_{n-1} + F_{n-2}$

Translating Recursive Ideas To Programs

- Recursive definition for Fibonacci:
 - Base cases: $F_0 = 0$, $F_1 = 1$
 - Recursion: $F_n = F_{n-1} + F_{n-2}$

```
def fibonacci(n):
    """
    Returns nth Fibonnaci number
    """
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)
 >>> print(fibonacci(5))
 >>> print(fibonacci(6))
 >>> print(fibonacci(7))
 5
 8
 13
```

The end!

