CS |34
More Recursion

he: All Computer Scientists!

hal: Gourd Decorating + Snacks! .
hore: CS Common Room (TCL 3rd floor)
hon: Thursday 10724, 3:30-4:30pm

Announcements & Logistics

Lab 6 (Dictionaries) Due today/tomorrow

WATCH THE LECTUREVIDEO ON DICTIONARIES
HW 6 on Gradescope will be released today
Lab 7/, 8,and 9 are partner labs

Pair programming is an important skill as well as a vehicle for
learning

Fll-out the partner form Lida emailed Monday

Due THURSDAY/TOMORROW

Do You Have Any Questions!?

L ast [Ime

* |ntroduction to recursion
« Alternative to teration

- New problem solving paradigm

« Function frame model to understand recursion behind the scenes

-

W .

VA
s

fay

D OD
ANAN A‘AvA'A

Last Time: Recursive Approach to Problem Solving

« A recursive function is a function that calls itself

* A recursive approach to problem solving has two main parts:

- Base case(s). When the problem is so small, we solve it
directly, without having to reduce It any further

- Recursive step. Does the following things:
« Performs an action that contributes to the solution

* Reduces the problem to a smaller version of the same
problem, and calls the function on this smaller subproblem

* The recursive step is a form of "wishful thinking” ‘
(also called the inductive hypothesis)

Jloday's Plan

More] practice translating recursive ideas Into recursive programs

-xamining the relationship between recursive and iterative programs

- That is, how do recursive ideas relate to the rterative ideas (for loops,
while loops) we've covered so far!

., @
\,“0
\,01\0
)
CY—

More Recursion: count_up

= = 7 \A- -
LHEBEBIVS

count_up(n)

- Write a recursive function that prints integers from 1 up to n

* Recursive definition of count_up:

 Base case: N ==

1, print(n) # last time!

- Recursive rule: call count_up(n-1), print(n)

>>> count_up(5)

Uk WNRE

>>> count_up(4)

~ WN -

>>> count_up(3)

1
2
3

count_up(n)

» Unlike count_down(n) the print statement is after the
recursive function call (why?)

- By printing after the recursive call, the print statement gets
executed “on the way back’ from recursive calls

>>> count_up(5) def count_up(n):
'"""Prints out integers from 1 up to n''"'
if n == 1:
print(n)
else:
count_up(n-=1)
print(n)

U WNER

Function Frame Model to
Understand count_up

I@'@dﬁg.\.&@IQ

count_up(4)

n |4

if n == 1:
print(n)

else:

count_up(n-1)
print(n)

count_up(3)

ni|3

if n ==
print(n)
else:
count_up(n-1)
print(n)

Base case reached!

count_up(2)

n|2

if n ==
print(n)
else:
count_up(n-1)
print(n)

>>> count_up(4)

count_up(1)

nil

1f n ==
print(n)
else:
count_up(n-1)
print(n)

>>> count_up(4)

~ W NN =

Recursion GOTCHAS!

= = 7 \A- -

GOTCHA # |

» It the problem that you are solving recursively is not getting
smaller, that 1s, you are not getting closer to the base case ---

infinite recursion!

- Never reaches the base case

def count_down_gotcha(n):
""'"Prints ints from 1 up to n’'"’

1f n == 1: # Base case
print(n)

| |
else: # Recursive case Subproblem not getting smaller!

print(n)
count_down_gotcha(n)

GOTCHA #2

+ Missing base case/unreachable base case--- another way to cause

infinite recursion!

def print_halves_gotcha(n):

"""Prints n, n/2, down to ... 1"""
if n == 0: Never true!
print(n)
else:
print(n)

return print_halves_gotcha(n/2)

"Maximum recursion
depth exceeded"

» In practice, the Infinite recursion examples will terminate
when Python runs out of resources for creating function call
frames, leads to a "maximum recursion depth exceeded”
error message

Recursion vs. lteration:
sum List

= = 7 \A- -

sum List

+ Goal: Write a function to sum up a list of numbers

- lterative approach?! (i.e., using loops!)

terative Approach to sum List

Goal: Write a function to sum up a list of numbers

terative approach:

def sum_list iterative(num_1lst):
sum = 0
for num in num_1lst:
sum num
return sum

>>> sum_list_iterative(I[3, 4, 20, 12, 2, 20])
61

sum List

+ Goal: Write a function to sum up a list of numbers

* Recursive approach!?

Recursive approach to sum_ L1st

- Base case:

- num_1Llst is empty, return 0

- Recursive rule:

» Return first element of num_1st plus result from calling sum_1l1ist
on rest of the elements of the list.

+ Example: Suppose num_1st = [6, 3, 6, 5]

* sum

* sum

* sum

list(

list(

list(

+ sum_Tlist(

6, 3, 6, 5]1) =6 + sum _list([3, 6, 51])
3, 6, 51) = 3 + sum_list([6, 51)

6, 5]) = 6 + sum_list([5])

5]1) =5 + sum_list([])

+ For the base case we have sum_1ist([]) returns @

Recursive approach to sum_ L1st

- num_1Llst is empty, return 0

- Base case:

- Recursive rule:

» Return first element of num_1st plus result from calling sum_1l1ist

on rest of the elements of the list.

» Example: Suppose num_lst

. sum

* sum

* sum

* sum

20

(

|4

>

(
(
(

5]) =5 +

[6, 3, 6, 5]

6, 3, 6, 5]1) =6 + sum| 14 [([3, 6, 51])
3, 6, 5]) = 3 + su| ||
6, 5]1) =6 +9 5 [ist([5])

st([6, 5])

0

1ist([])

+ For the base case we have sum_1ist([]) returns @

Recursive approach to sum_ L1st

def sum_list(num_1lst):
"HHReturns sum of given list"""
1f not num_1lst:
return 0
else:
return num_1lst[0] + sum_list(num_T1lst[1:])

>>> sum_list([3, 4, 20, 12, 2, 201)
61l

Compare sum_L1ist approaches

Compare/Contrast:

def sum_list iterative(num_1lst):
sum = 0
for num in num_1st:
Sum num
return sum

def sum_list(num_1lst):
1T num_1lst []:
return 0
else:
return num_1st[0] sum_list(num_1lst[1:])

Why Recursion?

What's The Big Deal With Recursion?

- Why choose recursion over rteration?

- The recursive solution can be more elegant, resulting in fewer lines
of code

- Fewer lines of code often correlates with less debugging

» Let’s consider a simple real world example

A Simple Real World Task

- Consider trying to find a key that is lost In a pile of boxes within boxes.

* (This task i1s quite similar to trying to find a file on your computer!)

Credit to Aditya Bhargava for the nice illustrations

Comparing Approaches lo Finding The Key

* In this case, It's much easier to describe the algorithm using a
recursive approach

MAKE A PILE
OF BOXES 1D
Loo k& THROLGH
N GO THROUGH
WHLE THE PILE (ISNT EVERY | TEM
EMPTY IN THE BoX

| __/*——-1 1 \N
.GRAB . B:;. (F You FIND ‘F‘:;\‘;F P
A
\F You FIND \F YOU FIND A BOX... \‘ You Aé pone!
ABON,ADD A KEY,
It To THE PLE Nou'RE DonE!
OF BoXES

L——-/
o BACK TD
THE P\LE

Iterative Approach Recursive Approach

Similar: Searching For A File On Our Computer

m\ Went.
=

lectures
syllabus. grades.

Readings

[

PDF ju PDF jm PDF

Similar: Finding a Word In a Dictionary
Finding the definition of "octopus”
\ Open pages at ~half, find
closest side
@ \ Open pages at ~half, find
closest side
I%n pages at ~half, find
dpus @ closest side
Find th ®dv'\| /‘OCtl
ind the word! Octo @

Open pages at ~half, find
closest side

Finding a rile: [terative

» Compare/Contrast:

def file found_iterative(files, target):
Iterative function that returns True 1f the list of files
contains the target file and False otherwise.
for file in files:
if file == target:
return True
return False

>>> files = ["homework", "puppy", "films"]
>>> file_found_iterative(files, "puppy")
True

>>> file found_iterative(files, "kitten")
False

Finding a rile: Recursive

» Compare/Contrast:

def file_found(files, target):

Recursive function that returns True 1if the list of files
contains the target file and False otherwise.
if files == []:

return False

else:
return files[0] == target or file_found(files[1:], target)

>>> files = ["homework", "puppy", "films"]
>>> file found(files, "puppy")

True

>>> file_found(files, "kitten")

False

Compare T1le found approaches

» Compare/Contrast:

def file found_iterative(files, target):
for file 1in files:
1f file == target:
return True
return False

def file_found(files, target):
if files == []:
return False
else:
return files[0] == target or file_found(files[1:], target)

5 @m = But what if we have folders in folders in folders!?
7\

Finding a File in Nested Structures: Iterative

def file found_iterative(folder, target):
create an initial list or pile of files/folders to look through
pile = []
for item in folder:
pile+=item
keep looking while the pile isn't empty
while len(pile) > 0:

get and remove the last item from the pile
item = pile[-1]
pile = pilel[:-1]

1T the item 1s a folder (list) add each item
1inside the folder onto the pile
if type(item) == list:
for obj in item:
pile += obj

otherwise check 1f the current file 1is our target

elif item == target:
return True

return False

ures: [terative

Finding a File iIn Nested Struc

def file_found_iterative(folder, target):

create an initial list or pile of files/folders to look through

pile = []
for item in folder:
pile+=item
keep looking while the pile isn't empty
while len(pile) > 0:

get and remove the last item from the pile

item = pile[-1]
pile = pile[:-1]

1f the item is a folder (list) add each item

inside the folder onto the pile
if type(item) == list:
for obj in item:

pile += obj
otherwise check if the current file 1is
elif item == target:

return True
return False

our target

>>> nested_folders = ["homework", ['"cat", "puppy", "goat"], ["films",

>>> file_found(nested_folders, "puppy")
True
>>> file_found(nested_folders, "poems")

False

"books"]]

Finding a File In Nested Structures: Recursive

def file_found(folder, target):
base case
if folder == []:
return False
else:
first _item = folder[0]

check 1f the first item i1is a folder (list), 1f so, recurse
if type(first_item) == list and first_item !'= []:
return file_found(first_item, target) or
file_found(folder[1:], target)

otherwise, item is a file name, so we check 1f 1it's our
target, or if the remaining files/folders contain our target

return first_item == target or file_found(folder[1:], target)
>>> nested_folders = ["homework", ["cat", "puppy", "goat"], ["films", "books"]]
>>> file found(nested_folders, "puppy")

True
>>> file_found(nested_folders, "poems")

False

Compare T1le found approaches

def file_found_iterative(folder, target):
create an initial list or pile of files/folders to look through
pile = []
for item in folder:
pile+=item
keep looking while the pile isn't empty
while len(pile) > 0:
get and remove the last item from the pile
item = pile[-1]; pile = pilel[:-1]
1if the item 1is a folder (list) add each item
inside the folder onto the pile
if type(item) == list:
for obj in item:

pile += obj
otherwise check if the current file is our target
elif item == target:

return True
return False

def file_found(folder, target):

if folder == []: # base case
return False

else:
first _item = folder[0]
check if the first item is a folder (list), if so, recurse
if type(first_item) == list and first_item != []:

return file_found(first_item, target) or file_found(folder([1:], target)

otherwise, item is a file name, so we check if it's our
target, or if the remaining files/folders contain our target
return first_item == target or file_found(folder[1:], target)

More Examples

= = 7 \A- -
LHEBEBIVS

Exercise: Forming Base Case & Recursive Rules

- The easiest way to understand recursion Is to first see examples of it

» Let's start by examining a familiar recursive definition in mathematics

« The set of natural numbers can be defined as follows:

« 1 is a natural number

* |If nis a natural number, then N+1 is a natural number

» Building blocks of a recursive idea:

|. Base case(s): 1 is a natural number

2. Recursive rule(s): If nis a natural number, then n+1 is a natural
number

Exercise: Forming Base Case & Recursive Rules

* How would you define the concept of exponentiation @M as a base case
and a recursive rule (assuming N >= 0)

« A recursive definrtion:

« Base case:

« Recursive rule:

Exercise: Forming Base Case & Recursive Rules

* How would you define the concept of exponentiation @M as a base case
and a recursive rule (assuming N >= 0)

« A recursive definrtion:

- Basecase: @9 = 1

- Recursive rule: a" = a *x an-i

- Recursive definition for an:

ranslating Recursive |deas lo Programs

def power(a, n):

Returns a”™n. Assumes n >= 0.

- Basecase: %9 = 1
if n ==
- Recursive rule: a" = a x an-1 return 1
else:
return a * power(a, n-1)

>>> print(power(5, 0))
>>> print(power(5, 4))
1

625

Exercise: Forming Base Case & Recursive Rules

» Similarly, how would you define the concept of factorial n! as a base case
and a recursive rule (assuming N >= @)

« A recursive definrtion:

- Basecase: Q! =1

+ Recursive rule: n! = n x (n-1)!

- Recursive definition for n!:

ranslating Recursive |deas lo Programs

def factorial(n):

Returns a!. Assumes n >= 0.
- Basecase: Q! =1
if n ==
- Recursive rule: n!' = n % (n-1)! return 1
else:
return a x factorial(n-1)

>>> print(factorial(1))
>>> print(factorial(5))
1

120

Exercise: Forming Base Case & Recursive Rules

- Let's examine a more complicated series known as the Fibonacci sequence.

» The Fibonacci sequence is a series of numbers that starts with @ and 1, and
where each successive number is the sum of the two preceding ones

e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 389,

« A recursive definition:

- Basecases: Fg = 0 and F1 = 1

- Recursive rule: Fn = Fn-1 + Fphoo

ranslating Recursive |deas lo Programs

def fibonacci(n):

Recursive definition for Fibonacci: | |
Returns nth Fibonnaci number

Base cases: Fop = 0, F1 =1 if n <= 1:
return n

. : — 1+ _ else:
Recursion: Fn Fn-1 Fn-2 return fibonacci(n-1) + fibonacci(n-2)

>>> print(fibonacci(5))
>>> print(fibonacci(6))
>>> print(fibonacci(7))
5
8
13

=) @ = Ny
=Y A mISI Ry PS/AWE

