
CS134:
More Recursion

Announcements & Logistics
• Lab 6 (Dictionaries) Due today/tomorrow

• WATCH THE LECTURE VIDEO ON DICTIONARIES
• HW 6 on Gradescope will be released today

• Lab 7, 8, and 9 are partner labs
• Pair programming is an important skill as well as a vehicle for

learning
• Fill-out the partner form Lida emailed Monday

• Due THURSDAY/TOMORROW

Do You Have Any Questions?

Last Time
• Introduction to recursion

• Alternative to iteration

• New problem solving paradigm

• Function frame model to understand recursion behind the scenes

• A recursive function is a function that calls itself

• A recursive approach to problem solving has two main parts:
• Base case(s). When the problem is so small, we solve it

directly, without having to reduce it any further
• Recursive step. Does the following things:

• Performs an action that contributes to the solution
• Reduces the problem to a smaller version of the same

problem, and calls the function on this smaller subproblem

• The recursive step is a form of "wishful thinking”
(also called the inductive hypothesis)

Last Time: Recursive Approach to Problem Solving

Today’s Plan
• [More] practice translating recursive ideas into recursive programs
• Examining the relationship between recursive and iterative programs

• That is, how do recursive ideas relate to the iterative ideas (for loops,
while loops) we’ve covered so far?

More Recursion: count_up

• Write a recursive function that prints integers from 1 up to n

• Recursive definition of count_up:
• Base case: n == 1, print(n) # last time!
• Recursive rule: call count_up(n-1), print(n)

count_up(n)

>>> count_up(5)
1
2
3
4
5

>>> count_up(4)

1
2
3
4

>>> count_up(3)

1
2
3

• Unlike count_down(n) the print statement is after the
recursive function call (why?)

• By printing after the recursive call, the print statement gets
executed “on the way back” from recursive calls

count_up(n)

def count_up(n):
 '''Prints out integers from 1 up to n'''
 if n == 1:
 print(n)
 else:
 count_up(n-1)
 print(n)

>>> count_up(5)
1
2
3
4
5

Function Frame Model to
Understand count_up

count_up(2)

2n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(4)

4n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(3)

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

3n

count_up(1)

1n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

>>> count_up(4)

Base case reached!

count_up(2)

2n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(4)

4n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(3)

3n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(1)

1n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

>>> count_up(4)

1
2
3
4

Base case reached!

Recursion GOTCHAs!

• If the problem that you are solving recursively is not getting

smaller, that is, you are not getting closer to the base case ---
infinite recursion!

• Never reaches the base case

GOTCHA #1

def count_down_gotcha(n):
 '''Prints ints from 1 up to n’''
 if n == 1: # Base case
 print(n)
 else: # Recursive case
 print(n)
 count_down_gotcha(n)

Subproblem not getting smaller!

• Missing base case/unreachable base case--- another way to cause
infinite recursion!

GOTCHA #2

def print_halves_gotcha(n):
 """Prints n, n/2, down to ... 1"""
 if n == 0:
 print(n)
 else:
 print(n)

 return print_halves_gotcha(n/2)

Never true!

• In practice, the infinite recursion examples will terminate
when Python runs out of resources for creating function call
frames, leads to a "maximum recursion depth exceeded"
error message

"Maximum recursion
depth exceeded"

Recursion vs. Iteration:
sum_list

sum_list
• Goal: Write a function to sum up a list of numbers
• Iterative approach? (i.e., using loops?)

Iterative Approach to sum_list
• Goal: Write a function to sum up a list of numbers
• Iterative approach:

def sum_list_iterative(num_lst):
 sum = 0
 for num in num_lst:
 sum += num
 return sum

>>> sum_list_iterative([3, 4, 20, 12, 2, 20])
61

sum_list
• Goal: Write a function to sum up a list of numbers
• Recursive approach?

Recursive approach to sum_list
• Base case:

• num_lst is empty, return 0
• Recursive rule:

• Return first element of num_lst plus result from calling sum_list
on rest of the elements of the list.

• Example: Suppose num_lst = [6, 3, 6, 5]
• sum_list([6, 3, 6, 5]) = 6 + sum_list([3, 6, 5])
• sum_list([3, 6, 5]) = 3 + sum_list([6, 5])
• sum_list([6, 5]) = 6 + sum_list([5])
• sum_list([5]) = 5 + sum_list([])

• For the base case we have sum_list([]) returns 0

Recursive approach to sum_list
• Base case:

• num_lst is empty, return 0
• Recursive rule:

• Return first element of num_lst plus result from calling sum_list
on rest of the elements of the list.

• Example: Suppose num_lst = [6, 3, 6, 5]
• sum_list([6, 3, 6, 5]) = 6 + sum_list([3, 6, 5])
• sum_list([3, 6, 5]) = 3 + sum_list([6, 5])
• sum_list([6, 5]) = 6 + sum_list([5])
• sum_list([5]) = 5 + sum_list([])

• For the base case we have sum_list([]) returns 0
0 5

11
14
20

5
11

14

Recursive approach to sum_list

def sum_list(num_lst):
 """Returns sum of given list"""
 if not num_lst:
 return 0
 else:
 return num_lst[0] + sum_list(num_lst[1:])

>>> sum_list([3, 4, 20, 12, 2, 20])
61

• Compare/Contrast:

Compare sum_list approaches

def sum_list(num_lst):
 if num_lst == []:
 return 0
 else:
 return num_lst[0] + sum_list(num_lst[1:])

def sum_list_iterative(num_lst):
 sum = 0
 for num in num_lst:
 sum += num
 return sum

Why Recursion?

What’s The Big Deal With Recursion?
• Why choose recursion over iteration?
• The recursive solution can be more elegant, resulting in fewer lines

of code
• Fewer lines of code often correlates with less debugging!
• Let’s consider a simple real world example

A Simple Real World Task
• Consider trying to find a key that is lost in a pile of boxes within boxes.
• (This task is quite similar to trying to find a file on your computer!)

Credit to Aditya Bhargava for the nice illustrations

Comparing Approaches To Finding The Key
• In this case, it’s much easier to describe the algorithm using a

recursive approach

Iterative Approach Recursive Approach

Similar : Searching For A File On Our Computer

Similar : Finding a Word in a Dictionary
Finding the definition of "octopus"

Open pages at ~half, find
closest side

Open pages at ~half, find
closest side

Open pages at ~half, find
closest side

Open pages at ~half, find
closest side

Find the word!

• Compare/Contrast:

Finding a File: Iterative

def file_found_iterative(files, target):
 """
 Iterative function that returns True if the list of files
 contains the target file and False otherwise.
 """
 for file in files:
 if file == target:
 return True
 return False

>>> files = ["homework", "puppy", "films"]
>>> file_found_iterative(files, "puppy")
True
>>> file_found_iterative(files, "kitten")
False

• Compare/Contrast:

Finding a File: Recursive

def file_found(files, target):
 """
 Recursive function that returns True if the list of files
 contains the target file and False otherwise.
 """
 if files == []:
 return False
 else:
 return files[0] == target or file_found(files[1:], target)

>>> files = ["homework", "puppy", "films"]
>>> file_found(files, "puppy")
True
>>> file_found(files, "kitten")
False

• Compare/Contrast:

Compare file_found approaches

def file_found_iterative(files, target):
 for file in files:
 if file == target:
 return True
 return False

def file_found(files, target):
 if files == []:
 return False
 else:
 return files[0] == target or file_found(files[1:], target)

But what if we have folders in folders in folders?

Finding a File in Nested Structures: Iterative
def file_found_iterative(folder, target):
 # create an initial list or pile of files/folders to look through
 pile = []
 for item in folder:
 pile+=item
 # keep looking while the pile isn't empty
 while len(pile) > 0:

 # get and remove the last item from the pile
 item = pile[-1]
 pile = pile[:-1]

 # if the item is a folder (list) add each item
 # inside the folder onto the pile
 if type(item) == list:
 for obj in item:
 pile += obj

 # otherwise check if the current file is our target
 elif item == target:
 return True

 return False

Finding a File in Nested Structures: Iterative
def file_found_iterative(folder, target):
 # create an initial list or pile of files/folders to look through
 pile = []
 for item in folder:
 pile+=item
 # keep looking while the pile isn't empty
 while len(pile) > 0:
 # get and remove the last item from the pile
 item = pile[-1]
 pile = pile[:-1]
 # if the item is a folder (list) add each item
 # inside the folder onto the pile
 if type(item) == list:
 for obj in item:
 pile += obj
 # otherwise check if the current file is our target
 elif item == target:
 return True
 return False

>>> nested_folders = ["homework", ["cat", "puppy", "goat"], ["films", "books"]]
>>> file_found(nested_folders, "puppy")
True
>>> file_found(nested_folders, "poems")
False

Finding a File in Nested Structures: Recursive
def file_found(folder, target):
 # base case
 if folder == []:
 return False
 else:
 first_item = folder[0]

 # check if the first item is a folder (list), if so, recurse
 if type(first_item) == list and first_item != []:
 return file_found(first_item, target) or \
 file_found(folder[1:], target)

 # otherwise, item is a file name, so we check if it's our
 # target, or if the remaining files/folders contain our target
 return first_item == target or file_found(folder[1:], target)

>>> nested_folders = ["homework", ["cat", "puppy", "goat"], ["films", "books"]]
>>> file_found(nested_folders, "puppy")
True
>>> file_found(nested_folders, "poems")
False

Compare file_found approaches
def file_found_iterative(folder, target):
 # create an initial list or pile of files/folders to look through
 pile = []
 for item in folder:
 pile+=item
 # keep looking while the pile isn't empty
 while len(pile) > 0:
 # get and remove the last item from the pile
 item = pile[-1]; pile = pile[:-1]
 # if the item is a folder (list) add each item
 # inside the folder onto the pile
 if type(item) == list:
 for obj in item:
 pile += obj
 # otherwise check if the current file is our target
 elif item == target:
 return True
 return False

def file_found(folder, target):
 if folder == []: # base case
 return False
 else:
 first_item = folder[0]
 # check if the first item is a folder (list), if so, recurse
 if type(first_item) == list and first_item != []:
 return file_found(first_item, target) or file_found(folder[1:], target)
 # otherwise, item is a file name, so we check if it's our
 # target, or if the remaining files/folders contain our target
 return first_item == target or file_found(folder[1:], target)

More Examples

Exercise: Forming Base Case & Recursive Rules
• The easiest way to understand recursion is to first see examples of it
• Let’s start by examining a familiar recursive definition in mathematics
• The set of natural numbers can be defined as follows:

• 1 is a natural number
• If n is a natural number, then n+1 is a natural number

• Building blocks of a recursive idea:

1. Base case(s): 1 is a natural number

2. Recursive rule(s): If n is a natural number, then n+1 is a natural
number

Exercise: Forming Base Case & Recursive Rules

• How would you define the concept of exponentiation an as a base case
and a recursive rule (assuming n >= 0)

• A recursive definition:
• Base case:
• Recursive rule:

Exercise: Forming Base Case & Recursive Rules

• How would you define the concept of exponentiation an as a base case
and a recursive rule (assuming n >= 0)

• A recursive definition:
• Base case: a0 = 1
• Recursive rule: an = a * an-1

Translating Recursive Ideas To Programs

• Recursive definition for an:
• Base case: a0 = 1
• Recursive rule: an = a * an-1

def power(a, n):
 """
 Returns a^n. Assumes n >= 0.
 """
 if n == 0:
 return 1
 else:
 return a * power(a, n-1)

>>> print(power(5, 0))
>>> print(power(5, 4))
1
625

Exercise: Forming Base Case & Recursive Rules
• Similarly, how would you define the concept of factorial n! as a base case

and a recursive rule (assuming n >= 0)

• A recursive definition:
• Base case: 0! = 1
• Recursive rule: n! = n * (n-1)!

Translating Recursive Ideas To Programs
def factorial(n):
 """
 Returns a!. Assumes n >= 0.
 """
 if n == 0:
 return 1
 else:
 return a * factorial(n-1)

>>> print(factorial(1))
>>> print(factorial(5))
1
120

• Recursive definition for n!:
• Base case: 0! = 1
• Recursive rule: n! = n * (n-1)!

Exercise: Forming Base Case & Recursive Rules
• Let’s examine a more complicated series known as the Fibonacci sequence.
• The Fibonacci sequence is a series of numbers that starts with 0 and 1, and

where each successive number is the sum of the two preceding ones

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..

• A recursive definition:
• Base cases: F0 = 0 and F1 = 1
• Recursive rule: Fn = Fn-1 + Fn-2

Translating Recursive Ideas To Programs

• Recursive definition for Fibonacci:
• Base cases: F0 = 0, F1 = 1
• Recursion: Fn = Fn-1 + Fn-2

def fibonacci(n):
 """
 Returns nth Fibonnaci number
 """
 if n <= 1:
 return n
 else:
 return fibonacci(n-1) + fibonacci(n-2)

>>> print(fibonacci(5))
>>> print(fibonacci(6))
>>> print(fibonacci(7))
5
8
13

The end!

