
CS134:
Recursion

Announcements & Logistics
• No HW due tonight :)

• Lab 6 due Wed/Thurs at 10 pm

• Uses dictionaries, plotting, CSV files

Do You Have Any Questions?

Last Time
• Worked through an example involving CSVs, dictionaries, and sets

• Discussed plotting with matplotlib

‣ Python is pretty useful for data processing and visualization!

Today’s Plan

• Discuss what we mean by the term recursion

• Practice translating recursive ideas into recursive programs
• Examining the relationship between recursive and iterative programs

• That is, how do recursive ideas relate to the iterative ideas (for loops,
while loops) we’ve covered so far?

Intro To Recursion

Where are We Going?
• First half of CS134: learned some fundamental programming concepts

• Functions, conditionals, loops, data types
• Built-in data structures and operations

• Looking ahead to the second half: more emphasis on algorithmic and
conceptual topics: more "computational thinking"
• Recursion (~1 week)
• Defining our own data types using classes and objects (~2 weeks)

• Object-oriented programming topics
• Start developing our intuition regarding efficient vs inefficient code

Recursion In Art and Pop Culture

• You’re already familiar with the idea of recursion, whether you’ve referred to
it by that name or not!

• The Droste effect was one of the first explicit uses of recursion in an
advertising medium in 1904

• The cocoa tin shows an image of a woman holding a platter with a tin that
has an image of the same woman holding platter with a tin that has an image
of…

Recursion In Art and Pop Culture

• You’re already familiar with the idea of recursion, whether you’ve referred to
it by that name or not!

• The Droste effect was one of the first explicit uses of recursion in an
advertising medium in 1904

• The cocoa tin shows an image of a woman holding a platter with a tin that
has an image of the same woman holding platter with a tin that has an image
of…

https://pbfcomics.com/comics/freaking_vortex/

Why Learn About Recursion?
• Recursion is an important problem solving paradigm

• An alternative to iteration for repeatedly performing a task
• Process that lets us "divide, conquer, combine"
• Useful to build and maintain data structures (like trees and lists)

• Provides a different lens to view the world
• If you love procrastination — recursion is just the thing for you!

So What Is Recursion?
• We will explore recursion by first seeing some examples in action
• Let’s revisit a familiar function: count_occurrences(elem, lst)

• Goal is to return the number of times elem appears inside list lst

• This function is iterative: we iterate through the list using a for loop,
and compare elem against each item in the list

def count_occurrences(elem, lst) :
 # accumulate 1 on each match
 count = 0
 for item in lst :
 if item == elem :
 count = count + 1
 return count

So What Is Recursion?
• One of the keys to thinking recursively breaking down the problem:

• What is the smallest version of the problem that we can immediately
solve?

• For larger versions of the problem, is there a small step we can take
that brings us closer to the smallest version of the problem?

• Let’s answer these questions for count_occurrences(elem, lst)
• How many times does elem appear in an empty list?

def count_occurrences(elem, lst) :
 # smallest list we know the answer to is empty list!
 if len(lst) == 0:
 return 0

So What Is Recursion?
• How many times does elem appear in an empty list?

• How many times does elem appear in a larger list?
• We don’t know yet! But we do know that the list has at least one

element in it, otherwise we would have returned 0…
• Idea: let’s break the problem into two smaller problems

• Is the first item in the list equal to elem?
• How many times does elem appear in the rest of the list?

def count_occurrences(elem, lst) :
 # smallest list we know the answer to is empty list!
 if len(lst) == 0:
 return 0

So What Is Recursion?
• Idea: let’s break the problem into two smaller problems

• Is the first item in the list equal to elem?
• How many times does elem appear in the rest of the list?

def count_occurrences(elem, lst) :
 # smallest list we know the answer to is empty list!
 if len(lst) == 0:
 return 0

 # Is the first item in the list equal to elem?
 first = 0
 if elem == lst[0]:
 first = 1

 # How many times does elem appear in the rest of the list?
 rest = count_occurrences(elem, lst[1:])

 # combine our results
 return first + rest

So What Is Recursion?
• Surprisingly, this function works!
• Some observations:

• Some paths through the function call the same function again
• This is what makes the function recursive

• Other paths through the function (the smallest case that we can solve
immediately) simply return the answer
• This is called a base case. Ever recursive function must have at least

one base case!
• It is important that our recursive calls move us closer to our base

case(s), otherwise we may get stuck in an infinite loop!
• Now let’s dive into the principles of recursive problem solving more

formally to get a better feeling for what is going on…

• A recursive approach to problem solving has two main parts:
• Base case(s). When the problem is so small, we solve it directly,

without having to reduce it any further (this is when we stop)
• Recursive step. Does the following things:

• Performs an action that contributes to the solution (take one step)
• Reduces the problem to a smaller version of the same problem, and

calls the function on this smaller subproblem (break the problem
down into a slightly smaller problem + one step)

• The recursive step is a form of "wishful thinking": assume
the unfolding of the recursion will take care of the smaller
problem by eventually reducing it to the base case

• In CS136/256, this form of wishful thinking will be
introduced more formally as the inductive hypothesis

Recursive Approach to Problem Solving

• Let’s review a simple recursive function that gives us some intermediate
feedback through print statements.

• Write a recursive function that prints integers from n down to 1
• Recursive definition of countdown:

• Base case: n = 1, print(n)
• Recursive rule: print(n), call count_down(n-1)

Understanding Recursive Functions

Perform one step Reduce the problem (or make
the problem “smaller”)

Print and stop

• Recursive definition of countdown:
• Base case: n = 1, print(n)
• Recursive rule: print(n), count_down(n-1)

Understanding Recursive Functions

def count_down(n):
 '''Prints numbers from n down to 1'''
 if n == 1: # Base case
 print(n)
 else: # Recursive case: n > 1:
 print(n)
 count_down(n-1)

>>> result = count_down(5)
5
4
3
2
1

• Recursive functions seem to be able to reproduce looping behavior
without writing any loops at all

• To understand what happens behind the scenes when a function calls
itself, let’s review what happens when a function calls another function

• Conceptually we understand function calls through the function frame
model

Understanding Recursive Functions

Most of the examples we're looking at today are easily
written iteratively, but we'll be looking at problems later

where that may not be the case!

Review:
Function Frame Model

• Consider a simple function square
• What happens when square(5) is invoked?

def square(x):

return x*x

Review: Function Frame Model

>>> square(5)

5

square(5)

x

return x * x

25

Review:
Function Frame Model

• When we return from a function frame
"control flow" goes back to where the
function call was made

• Function frame (and the local variables
inside it) are destroyed after the
return

• If a function does not have an explicit
return statement, it returns None after
all statements in the body are executed

Return value replaces the
function call

>>> square(5) + 4

5

square(5)

x

return 25

25

Summary:
Function Frame Model

What happens with a
complex expression?

• How about functions that call other functions?

def sum_square(a, b):

return square(a) + square(b)

• What happens when we call sum_square(5, 3)?

Review:
Function Frame Model

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

9

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

9

34

Function Frame Model to
Understand count_down

>>> val = count_down(5)
5
4
3
2
1

>>> val = count_down(4)
4
3
2
1

def count_down(n):
 '''Prints ints from n down to 1'''
 if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(4)

4n

if n == 1:
 print(n)
else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
else:
 print(n)
 count_down(n-1)

count_down(2)

2n

if n == 1:
 print(n)
else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

1

Base case reached!

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

countDown(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

• Recursive functions may seem like magic at first glance, but they follow
from the principles that we’ve been building all semester.

• It often takes several exposures to recursion before it “clicks”, so we’ll
keep revisiting recursion in the coming lectures
• Drawing pictures and practicing are two tools that can help
• Our next lab is a partner lab so you can bounce your ideas off of a

classmate and work though recursion stumbles

TADA!

More Recursion: count_up

• Write a recursive function that prints integers from 1 up to n

• Recursive definition of count_up:
• Base case: n = 1, print(n)
• Recursive rule: call count_up(n-1), print(n)

count_up(n)

>>> count_up(5)

1
2
3
4
5

>>> count_up(4)

1
2
3
4

>>> count_up(3)

1
2
3

We swapped the order of recursing
(calling count_up) and printing

• Note that unlike count_down(n) we moved our print
statement to be after the recursive function call

• By printing after the recursive call, the print statement gets
executed “on the way back” from recursive calls

count_up(n)

def count_up(n):
 '''Prints out integers from 1 up to n'''
 if n == 1:
 print(n)
 else:
 count_up(n-1)
 print(n)

>>> count_up(5)
1
2
3
4
5

Function Frame Model to
Understand count_up

count_up(4)

4n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(3)

3n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(2)

2n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(1)

1n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

>>> count_up(4)

1
2
3
4

Base case reached!

Recursion GOTCHAs!

• If the problem that you are solving recursively is not getting

smaller, that is, you are not getting closer to the base case ---
infinite recursion!

• Never reaches the base case

GOTCHA #1

def count_down_gotcha(n):
 '''Prints ints from 1 up to n’''
 if n == 1: # Base case
 print(n)
 else: # Recursive case
 print(n)
 count_down_gotcha(n)

Subproblem not getting smaller!

• Missing base case/unreachable base case--- another way to cause
infinite recursion!

GOTCHA #2

def print_halves_gotcha(n):
 """Prints n, n/2, down to ... 1"""
 if n > 0:
 print(n)
 return print_halves_gotcha(n/2)

Always true!

• In practice, the infinite recursion examples will terminate
when Python runs out of resources for creating function call
frames, leads to a "maximum recursion depth exceeded"
error message

"Maximum recursion
depth exceeded"

• Intro to turtle module and graphical recursion
• Comparing iterative and recursive programs

Next Lectures

The end!The end!

