
CS134:
Sets

Announcements & Logistics
• HW 5 due today @ 10pm

• Lab 4 Part 2 due Wednesday/Thursday 10pm

• There is a Gradescope - Part 2 assignment

• Midterm reminders:

• Midterm Exam is Thursday, October 17 at 6pm or 8pm in TPL203

• Midterm Review is in place of class on Wednesday 10/16 during class,
9am-11:50am Bring Questions!!

• To Prepare: Redo: [homework, practice exams, POGIL questions
(including Application Questions), pre-labs & labs] w paper & pencil...then
check your answers with Python!

• Final Exam schedule is posted: Wednesday, December 11 at 9:30am

Do You Have Any Questions?

Last Time: Scope
• Scope: variables, functions, objects have limited accessibility/visibility.

• Understanding how this works helps us make decisions about where
to define variables/functions/objects

Today's Plan
• Sets — a new data structure that allows us to efficiently store

unordered collections of objects

• An example of designing algorithms to use sets

Sets

New Unordered Data Structure: Sets
• Lists are ordered collections of objects
• What if we only need an unordered collection of individual items?

• We can use a new data structure: sets
• Sets are mutable, unordered collections of immutable objects
• Sets are written as comma separated values between curly braces
• Elements in a set must be unique and immutable

• Sets can be an effective way of eliminating duplicate values

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> empty_set = set() # empty set

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques
???
>>> set("aabrakadabra")
???

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

• Might lose the ordering of elements

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques

>>> set("aabrakadabra")
{'a', 'b', 'c'}

{'a', 'b', 'd', 'k', 'r'}

Sets: Creating New Sets
• There are two ways to create a new set:

• By placing curly brackets around elements:

• By converting an iterable collection into a set:

• And only one way to create an empty set:

>>> set_func = set('aardvark')
>>> set_func
{'d', 'v', 'a', 'r', 'k'}

>>> set_brack = {'aardvark'}
>>> set_brack
{'aardvark'}

Why letters here instead
of the word?

>>> empty_set = set()
>>> empty_set
set()

Strings are iterable collection!

• Can check membership in a set using in, not in
• Can check length of a set using len()
• Can iterate over values in a loop (order will be arbitrary)

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> 16 in nums
False
>>> "asters" in flowers
True
>>> len(flowers)
4
>>> # iterable
>>> for f in flowers:
>>> ... print(f)

Sets: Membership and Iteration

tulips
daisies
daffodils
asters

Sets are Unordered
• Therefore we cannot:

• Index into a set (no notion of “position”)
• Concatenate (+) two sets (concatenation implies ordering)
• Create a set of mutable objects:

• Such as lists, sets, and dictionaries (foreshadowing...)

>>> {[3, 2], [1, 5, 4]}
TypeError
----> 1 {[3, 2], [1, 5, 4]}

TypeError: unhashable type: 'list'

Set Operations
• The usual operations you think of in set theory are implemented as follows

The following operations always return a new set.

• s1 | s2 (Set Union)

• Returns a new set that has all elements that are either in s1 or s2

• s1 & s2 (Set Intersection)

• Returns a new set that has all the elements that are common to both sets.

• s1 - s2 (Set Difference)

• Returns a new set that has all the elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that mutate
s1 to become the result of the operation on the two sets.

Set Operations
>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}

>>> peanuts = {"sally", "linus", "charlie", "franklin", "lucy", "patty"}

Set Operations
>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> peanuts = {"sally", "linus", "charlie", "franklin", "lucy", "patty"}

>>> union = cs134_dogs | peanuts
>>> union
{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', 'artie', 'linus', 'charlie'}

>>> intersect = cs134_dogs & peanuts
>>> intersect
{'sally', 'linus'}

>>> diff = cs134_dogs - peanuts
>>> diff
{'chelsea', 'artie', 'wally', 'pixel'}

>>> cs134_dogs
{'sally', 'wally', 'linus', 'artie', 'chelsea', 'pixel'}

Original set is unchanged!

Set Operations: Mutators
>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> peanuts = {"sally", "linus", "charlie", "franklin", "lucy", "patty"}

>>> cs134_dogs |= peanuts
>>> cs134_dogs
{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', 'artie', 'linus', 'charlie'}

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> cs134_dogs &= peanuts
>>> cs134_dogs
{'sally', 'linus'}

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> cs134_dogs -= peanuts
>>> cs134_dogs
{'wally', 'artie', 'chelsea', 'pixel'}

Original set is mutated!

Original set is mutated!

Original set is mutated!

Set Operations
• The usual operations you think of in set theory are implemented as follows

The following operations always return a new set.

• s1 | s2 (Set Union)

• Returns a new set that has all elements that are either in s1 or s2

• s1 & s2 (Set Intersection)

• Returns a new set that has all the elements that are common to both sets.

• s1 - s2 (Set Difference)

• Returns a new set that has all the elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that mutate
s1 to become the result of the operation on the two sets.

Example: Word Puzzles

NYTimes Spelling Bee
The NYTimes Spelling Bee Puzzle is a source of interesting word problems. These
words are spelled with an alphabet (called a "hive") of at most seven letters:
• https://www.nytimes.com/puzzles/spelling-bee

How many 4-7 letter isograms can we find in the 7 letters below, that all use the
center letter?

'airy'
'army'
'fairly'
'firmly'
'ramify'
...

The CS134 edition uses
words that have letters
that only appear once
(i.e., isograms)

https://www.nytimes.com/puzzles/spelling-bee

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

• Possible algorithms to solve this:
1. look at each word in the dictionary
2. if it has in 'y' it and a length greater than 3...
3. ...and it's an isogram...
4. ...and if it is only made up of the specified letters?
5. Then it's a match

NYTimes Spelling Bee

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

1. look at each word in the dictionary
 # 2. if it has y in it and len > 3
 # 3. and it's an isogram
 # 4. and it's only made up of the specified letters
 # Add to our results list

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

for word in word_list:
 if 'y' in word and len(word) > 3:
 # 3. and it's an isogram
 # 4. and it's only made up of the specified letters
 answers += [word]

answers = []

return answers

Helper Function!

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

def is_isogram(word):
 """ Returns True if word is a string without any
 repeat letters
 >>> is_isogram("iris")
 False
 >>> is_isogram("lida")
 True
 """
 # How do we know if a word only has a unique number
 # of letters?

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

def is_isogram(word):
 """ Returns True if word is a string without any
 repeat letters
 >>> is_isogram("iris")
 False
 >>> is_isogram("lida")
 True
 """
 return len(word) == len(set(word))

Take advantage of set(..) and how it only
retains unique elements in a collection!

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

answers = []
for word in word_list:
 if 'y' in word and len(word) > 3 and is_isogram(word):
 # 4. and it's only made up of the specified letters
 answers += [word]
return answers

More sets!

>>> # set 1 smaller than set 2
>>> set('airy') - set('ymaiflr')
set()
>>> # set 1 more letters than set 2
>>> set('maniacal') - set('ymaiflr')
{'n', 'c'}
>>> # set 1 same len as set 2
>>> set('bngepst') - set('ymaiflr')
{'b', 'n', 'g', 'e', 'p', 's', 't'}
>>> # set 1 same letters as set 2
>>> set('iflramy') - set('ymaiflr')
set()

Set Difference

If this difference operation results in an
empty set, then the word is in the hive!

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

answers = []
for word in word_list:
 if 'y' in word and len(word) > 3 and is_isogram(word)
 and not(set(word)-set(hive)):
 answers += [word]
return answers

Let's make it a function that uses arguments,
for generalizability!

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

def spelling_bee(center, hive, word_list):
 answers = []
 for word in word_list:
 if center in word and len(word) > 3 and
 is_isogram(word) and not(set(word)-set(hive)):
 answers += [word]
 return answers

We need to call this function somewhere...

• Problem: How many 4-7 letter isograms can we find in the 7 letters
below, that all use 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']

NYTimes Spelling Bee

def spelling_bee(center, hive, word_list):
 answers = []
 for word in word_list:
 if center in word and len(word) > 3 and
 is_isogram(word) and not(set(word)-set(hive)):
 answers += [word]
 return answers

if __name__ == '__main__': # only runs when code is run as a script

 # How many 4-7 letter isograms are in the letters below,
 using the letter 'y'? ['y', 'm', 'a', 'i', 'f', 'l', 'r']
 spelling_bee('y', 'ymaiflr', read_words("/usr/share/dict/words"))

Helper function that reads in words from /usr/
share/dict/words

The end!

