CS|34:
Scope

Announcements & Logistics

HW 5 due Monday @ |0pm
Lab 4 Part 2 due VWednesday/Thursday |0pm
There will be a Gradescope - Part 2 assignment
Midterm reminders:
Midterm Exam is Thursday, October |/ at 6pm or 8pm in TPL203

Midterm Review is in place of class on Wednesday 10/16 during class,
9am-1 1:50am Bring Questions!!

To Prepare: Redo: [homework, practice exams, POGIL questions
(including Application Questions), pre-labs & labs] w paper & pencil..then
check your answers with Python!

Final Exam schedule is posted: VWednesday, December | | at 9:30am

Do You Have Any Questions!?

Last [Ime: Mutability & Aliasing

-+ Attempts to change immutable objects (e.g, strings) produce
clones

»+ (Changes to clones do not affect originals
» No aliasing!
- We can create aliases of mutable objects

- Aliases refer to the same object, so changes to that object through
any alias affect value that other aliases point to

* For the list data type, += (append operator) mutates the list!

Goal was to demystify surprising behavior:

nothing In computer science Is magic!

Jloday's Plan

- Scope: variables, functions, objects have limited accessibility/visibility.

- Understanding how this works helps us make decisions about where

to define variables/functions/objects

7

Goal Is to again demystify surprising behavior:
nothing In computer science Is magic!

What gets printed to the screen!?

a = 3
b =4
def square(x):
return x * X
Cc = square(a) + square(b)
c = pow(c, 0.5)

print(c)

What gets printed to the screen!?

3

4

square(x) :

return x * X

Cc = square(a) + square(b)
c = pow(c, 0.5)

print(c)

QT QO
()
=h I |l

What gets printed to the screen!?
What if we make this change?

3

4 /
square) :

return] x)

c = square(a) + square(b)

c = pow(c, 0.5)
print(c)

QT WL
()
=h Il i

What gets printed to the screen!?

3 Same outmt!\‘
4

square (B)) :

return] x)

c = square(a) + square(b)
c = pow(c, 0.5)

print(c)

QT WL
()
=h Il i

What gets printed to the screen!?
What if we make this change?

3

4 /
square®): D

return) x Bl

Cc = square(a) + square(b)

c = pow(c, 0.5)
print(c)

QT WL
()
=h Il i

What gets printed to the screen!?

Not the same output

3
4
square@): b \2-2915 |

return] x [l
Cc = square(a) + square(b)
c = pow(c, 0.5)

print(c)
But also not an error!

Big Question: VWhen we reuse
variable names, how does Python
know what a variable refers to!?

QT QO
()
=h I |l

1381

Scope Diagram

« |In Gladden & Mission dorms, "Mark

Hopkins" refers to Mark Hopkins
1824, President of Williams College

| 836-1872.

- In TCL, "Mark

Professor Mar
working at Wi

Hopkins" refers to
< Hopkins, who started

llams in 2022,

Gladden Mission TCL

Casey & Cleo

o 8
&b Kb

Let's see 1t In python!

scope.py

mar_hop = 111119 # Mark Hopkins ’1824 student ID number

def gladden():
glen = 223456 # Glen’s student ID number
gina = 287654 # Gina’s student ID number
print(glen, gina, mar_hop)

def mission():
may = 277777 # May's student ID number
matt = 288888 # Matt's student ID number
print(may, matt, mar_hop)

def tcl():
mar_hop = 998877 # Mark Hopkins ’2022 student ID number
casey = 212233 # Casey’s student ID number
cleo = 233444 # (Cleo’s student ID number
print(casey, cleo, mar_hop)

if __name__ == ' main__ ':
gladden() # prints?
mission() # prints?

tcl() # prints?

Let's see 1t In python!

scope.py

mar_hop = 111119 # Mark Hopkins ’1824 student ID number

def gladden():
glen = 223456 # Glen’s student ID number
gina = 287654 # Gina’s student ID number
print(glen, gina, mar_hop)

def mission():
may = 277777 # May's student ID number
matt = 288888 # Matt's student ID number
print(may, matt, mar_hop)

def tcl():
mar_hop = 998877 # Mark Hopkins ’2022 student ID number
casey = 212233 # Casey’s student ID number
cleo = 233444 # (Cleo’s student ID number
print(casey, cleo, mar_hop)

if __name__ == ' main__ ':
gladden() # 223456 287654 111119
mission() # 277777 288888 111119

tcl() # 212233 233444 998877

Let's see 1t In python!

scope.py

mar_hop = 111119 # Mark Hopkins ’1824 student ID number

def gladden():
glen = 223456 # Glen’s student ID number
gina = 287654 # Gina’s student ID number
print(glen, gina, mar_hop)

What if we print(glen) in
def mission(): e .
may = 277777 # May's student ID number m|55|on() or tCl()?

matt = 288888 # Matt's student ID nu
print(may, matt, gnar
print(glen)

def tcl():
mar_hop = 998877 # Mark Hopkins '’ student ID number
casey = 212233 # Casey’s stu ID number
cleo = 233444 # (Cleo’s ent ID number
print(casey, cleq,

print(glen)
if __name__ == "' main_ ':
gladden()

mission (=3 NameError: name 'glen’
tcl() —Pp 15 not defined

| ocal Before Global

When python encounters a new term, like @
variable or function name, it first looks locally,
before looking higher up.

If it can't find the value assigned to the term, you
oet a NameError.

triple(num)
A Small Example

=) ..® m \ /e
H%@k%ﬁ[;;iﬁhwﬂi@ﬂﬁﬁaihé%ﬁ

Example: tri

A

def triple(num): in function
multiplier = 3 <«
return multiplier *x num
answer = triple(5)
print(answer)

C

def triple(num):
return multiplier *x num
multiplier = 3 <
answer = triple(5) pelow/after
print(answer) -
function

ble(num)

above/before

B function
multiplier = 3 =
def triple(num):

return multiplier * num
answer = triple(5)
print(answer)

D

def triple(num):
return multiplier * num
answer = triple(5

multiplier = 3 4—
print{answer) . gar function cal

What will each of these print!?

Example: tri

A

def triple(num): in function

multiplier = 3 <«
return multiplier *x num
answer = triple(5)

print(answer) 15

C

def triple(num):
return multiplier *x num

multiplier = 3 <«
answer = triple(5) pelow/after

print(answer) 15 function

ble(num)

above/before

B function

multiplier = 3 =
def triple(num):

return multiplier * num
answer = triple(5)

print(answer) 15

D

def triple(num):
return multlpller * num
answer = triple(5

multiplier = 3 4—
print{answer) . gar function cal

NameError: name
'multiplier’

1s not defined

What will each of these print!?

Function Frame Moael

Scope: Function Frame Mode|

» By default, python reads code one line at a time, starting from line O

0 multiplier = 3
| def triple(num):
return multiplier *x num
2 answer = triple(5)
3 print(answer)

Scope: Function Frame Mode|

- At first, when variables are assigned, their values are stored in the global
frame

Global Frame

multiplier : 3
| def triple(num):

return multiplier * num
2 answer = triple(5)
3 print(answer)

Scope: Function Frame Mode|

Function definitions are treated like a single line of code

-+ A def statement does not call the function, it just defines it

Global Frame

multiplier : 3
triple : multiplier * num

| def triple(num):
return multiplier * num

dNSWE = 1D LE

3 print(answer)

Sco

be: Function Frame Model

Function definitions are treated like a single line of code

-+ A def statement does not call the function, it just defines it

Effectively, it assigns the name of the function to a blueprint for

computing the function

0 multiplier =

| def triple(num):
return multiplier * num

e
3 print(answer)

Al1SWE -

Global Frame

multiplier_ : 3
triple :

Scope: Function Frame Mode|

- To execute an assignment statement, python first computes the value of
its right-hand side

In this case, the right-hand side calls the trip le function

Global Frame

0 multiplier = 3 multiplier_: 3
| def triple(num): triple :

return multiplier * num
2 answer = triple(5
print(answer

Scope: Function Frame Mode|

- When a function is called, a new frame Is created to record the variables

used by that function Global Frame

multiplier :
triple :

multiplier = 3
def triple(num):

return multiplier * num :
answer =Jtriple(5) Call Frame paren
print(answer

Scope: Function Frame Mode|

» First, the values of the argument variables are recorded in the call (i.e.,

function) frame Global Frame

multiplier :
triple :

0 multiplier = 3

| def triple
return MU blier * num

2 answer =ltriple(5) parent

3 print(answer

Call Frame

num : 5

Scope: Function Frame Mode|

« Then, the lines of the function are executed In order

To look up the value of a variable, first python looks Global Frame
in the call frame

multiplier :
triple :

multiplier = 3

def triple(num):
return multiplier * num Arent
answer = triple Call Frame P

print(answer)

Scope: Function Frame Mode|

f the variable 1sn't found in the call frame, then

dbython looks In the parent frame Global Frame

* (the frame we were in when the function was

multiplier = 3
called) :

multiplier

answer = triple
print(answer)

Call Frame

Scope: Function Frame Mode|

Ultimately, a return value 1s computed for the function call

Global Frame

multiplier :

triple :

multiplier = 3

def triple(num):
return multiplier * num Arent
answer = triple Call Frame P

print(answer)
num : 5

return value :

15

Scope: Function Frame Mode|

» The call frame Is destroyed

Global Frame

multiplier :
triple :

0 multiplier = 3

| def triple(num):
return multiplier * num —
2 answer = tripetle IP

3 print(answer)
num : 5

return value : 15

Scope: Function Frame Mode|

- ..and the return value of the function call is assigned to variable

answer in the global frame Global Frame

multiplier :
triple :

answer.

0 multiplier = 3
| def triple(num):

return multiplier * num
2 answer = [triple(5)
3 print(answer

return value : 15

Scope: Function Frame Mode|

- ..and the return value of the function call is assigned to variable

answer in the global frame Global Frame

multiplier :
triple :

answer: 15

0 multiplier = 3
| def triple(num):

return multiplier * num
2 answer = [triple(5)
3 print(answer

Scope: Function Frame Mode|

- Finally, the value of answer is looked up in the global frame

* And printed to the screen

Global Frame

0 multiplier = 3 multiplier : 3

| def triple(num): triple :
return multiplier * num

2 answer = triple(5) |

3 print (Ensver] answer : 15

W

Function Frame Model;
Side-by-Side

Side-by-Side

C
def triple(num): def triple(num):
return multiplier *x num return multlpller * num
multiplier = 3 ~ = answer = triple(5
answer = triple(5) pelow/after multiplier = 3 4—

print(answer) print(answer)

function after function call

Let's use these principles to trace the

execution of these two programs
Side-By-Side

Side-by-Side
D

C
def triple(num): def triple(num):

return multiplier *x num return multiplier *x num
multiplier = answer = triple
answer = triple(5) multiplier = 3
print(answer) print(answer)

Global Frame Global Frame

C

def triple(num):
otyurn multiplier * num

answer = triple(5)

print(answer)

Global Frame

triple :

multiplier :

Side-by-Side
D

def triple:

return multiplier * num
answer =Jtriple(5)
multiplier =

print(answer)

Global Frame

t
Call Frame ?Pare"

num : 5

Side-by-Side
D

C
def triplel(num}: def triple(num):
return multiplier * num return * num
multiplier = 3 answer = triple
answer =jtriple(5) multiplier = 3
print(answer print(answer)

Global Frame Global Frame

triple :

multiplier :

Call Frame Call Frame

num : 5

Side-by-Side
D

C

def triple(num): def triple(num):
return[multiplie * return % num

multiplier = answer =

print(a

answer = triplel}5)
print(answer)

Global Frame

Side-by-Side
D

C

def triple(num): def triple(num):
multiplier = answer =

answer = multip by
print(answer print(a

Global Frame

triple :

multiplier o

Call Frame

return value

Side-by-Side
D

C

def triple(num): def triple(num):
multiplier = answer =

answer =jtriple(5)| multip g
print(answer print(a

Global Frame

triple :

multiplier o

Call Frame

return value

Side-by-Side
D

C
def triple(num): def triple(num):
return multiplier *x num return % num
multiplier = 3 answer =
answer = multip tg
print(answer print(a

Global Frame

triple :

multiplier . 3
answer : 1

return value : 15

Side-by-Side
D

C
def triple(num): def triple(num):

return multiplier *x num return % num
multiplier = 3 answer =

qnswer = inle(5) multip g
print(answer) print(a

Global Frame

triple :

multiplier o
answer : 15

More Examples

What gets printed to the screen!?

multiplier = 3
def mystery(num):

return multiplier * num
multiplier = 2
answer = mystery(5)
print(answer)

What gets printed to the screen!?

multiplier = 3
def mystery(num):

return multiplier * num
multiplier = 2
answer = mystery(5)
print(answer)

- multiplier is recorded as 3 on the Global Frame

* Then the mystery() blueprintis recorded on the Global Frame

hen multiplier is re-assigned the value 2 on the Global Frame

What gets printed to the screen!?

list = 2468
list_str = list("whodoweappreciate")
print(list, list_str)

What gets printed to the screen!?

list = 2468
list_str = list("whodoweappreciate")"
print(list, list_str)

-+ list is a python keyword, in the Global Frame
- list = ... reassigns the value of list in the Global Frame

- It's no longer the keyword, it's now an integer object

+ So you can't call List(..) asthe built-in list-casting function!

- ...Thisis why we don't use python keywords as variable names.

Helpful Tool for Learning
How python Executes Code

» https://pythontutor.com/cp/composingprograms.ntmi

Frames Objects

Global frame func mystery(num) [parent=Global]

multiplier 2

mystery

fl: mystery [parent=Global]

num 5

Return
value 10

https://pythontutor.com/cp/composingprograms.html

=) @ = N
=Y A mISI Ry PS/AWE

