
CS 134:
Mutability

Announcements & Logistics
• HW 5 will be released today

• Lab 4

• Part 1 due today/tomorrow

• Must hand-in Part 1 to get credit for Part 2!

• No Lab Extensions on Part 1

• Part 2 due next Wednesday/Thursday

• runtests.py: least_votes_test4() should return ['Diz', 'Mo'],
not ['Mo']. So, change the should return print line to:

• print(" should return: ['Diz', 'Mo']")

• Midterm Exam is Thursday, October 17 at 6pm or 8pm

• Final Exam schedule is posted: Wednesday, December 11 at 9:30am
Do You Have Any Questions?

Last Time
• Querying sequences of sequences

• Finding the max/min counts, writing helper functions

• Module vs scripts

• How to import and test functions

• Role of the special if __name__ == "__main__": code
block
• Great for testing code in Lab Assignments - so long as we

didn't already provide an if __name__ block!

Today's Plan
• Discuss mutability and its consequences: list aliasing

Mutability, Identity, and Value

Value vs Identity
• Python is an object oriented language: everything is an object!

• An object’s identity never changes once it has been created; think of it
as the object’s address in memory

• The id() function returns an integer representing an object’s
identity (or address)

• An object’s value is the value assigned to the object when it is created

identity: mem address
where 5 is stored

value: 5

>>> num = 5
>>> id(num)
4486937008

5

num

Value vs Identity

• An object’s identity never changes once it has been created; think of it
as the object’s address in memory

• On the other hand, an object’s value can change

• Objects whose values can change are called mutable; objects whose
values cannot change are called immutable

id: 4486937008

Variable names like num point to memory
addresses of stored value

Memory address

>>> num = 5
>>> id(num)
4486937008

5

num

• The == operator compares the value of an object (i.e., are the
contents of the objects the same?)

• The is operator compares the identity of two objects (i.e., do they
have the same memory address?)

• var1 is var2 is equivalent to id(var1) == id(var2)

Comparing Value vs Identity

Variable names like num point to memory
addresses of stored value

>>> num = 5
>>> id(num)
4486937008

id: 4486937008
Memory address

5

num

Mutability in Python

• Once you create them, their value cannot be changed!
• All functions and methods that manipulate these objects return a new

object and do not modify the original object

• List values can be changed, e.g., by using the indexing notation and
directly modifying an element of the list. There are also exist list
methods that can be used to modify the list in place

• If we use sequence operators on lists, these functions and operations
return a new list and do not modify the original list

Lists are Mutable

Strings, Ints, Floats are Immutable

Ints, Floats are Immutable

Has the identity of num
changed?

Attempts to change an immutable object create a new object

>>> num = 5
>>> id(num)
4486937008

>>> num = num + 1
>>> id(num)

id: 4486937008

5

num

6

id: 4486937008

id: 4486937040

Identity of ints cannot be changed,
num assumes a new identity

Attempts to change an immutable object create a new object

Ints, Floats are Immutable
>>> num = 5
>>> id(num)
4486937008

>>> num = num + 1
>>> id(num)
4486937040

id: 4486937008

5

num

5

num

Strings are Immutable

Even though word and college have
the same identity and value, if we

update one of them, it just assumes
a new identity!

word college

Attempts to change an immutable object create a new object

id: mem addr (4518582576)

Variable names point to memory
addresses of stored value

>>> word = "Williams"
>>> college = word
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

'Williams'

Strings are Immutable

Attempts to change an immutable object create a new object

>>> word = "Williams"
>>> college = word
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

>>> word = "Amherst"
>>> print(id(word), id(college))
4518871920 4518582576

>>> word is college
False

word college

'Williams'

'Amherst'

id: mem addr (4518582576)

id: mem addr (4518871920)

Strings are Immutable

Even though we created word and
college separately, they still point to
the same memory address. This is a
(confusing) optimization in Python.

Immutable objects that are == also share an identity

id: mem addr (4518582576)

Variable names point to memory
addresses of stored value

>>> word = "Williams"
>>> college = "Williams"
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

word college

'Williams'

String Operations Return New Strings
• Sequence operations, like slicing [:], return new sequences

>>> name = "chelsea"
>>> id(name)
4574657776

name

'chelsea'

• Sequence operations, like slicing [:], return new sequences

String Operations Return New Strings

>>> name = "chelsea"
>>> id(name)
4574657776

>>> name = name[1:4]
>>> id(name)
4574684720

name

'chelsea'

'hel'

Sequence Operations Return New Sequences

• The following operations, that can be performed on both
lists and strings, and always return a new list/string

• [::] slicing operator: returns a new sliced sequence
• assignment of a new sequence to a variable

• names = 'Iris and Lida'
• my_list = [1, 2, 3]

• concatenation (+) always creates a new sequence

List
Identity and Value

Lists are Mutable

List objects created separately with same values, different identities

Note: Same value, different
identities

>>> my_list = [1, 2, 3]
>>> id(my_list)
4418551104

>>> ur_list = [1, 2, 3]
>>> id(my_list)
4418559392

my_list

[1, 2, 3]

ur_list

[1, 2, 3]

Lists are Mutable

[1, 2, 3]

my_list

[1, 2, 4]

my_list

Value of list objects can change, keeping identity the same

Note: Value changes, identity
stays the same

>>> my_list = [1, 2, 3]
>>> id(my_list)
4418551104

>>> my_list[-1] = 4
>>> id(my_list)
4418551104

Lists are Mutable

Two variables, one identity, changes to one impact the other!

>>> my_list = [1, 2, 3]
>>> id(my_list)
4418551104

>>> ur_list = my_list
>>> id(ur_list)
4418551104

ur_list

>>> my_list += [4]
>>> ur_list
[1, 2, 3, 4]

my_list

[1, 2, 3]

ur_listmy_list

[1, 2, 3, 4]

List Appending vs. Concatenation

+= (appending) modifies a list, but + (concatenation) does not!

>>> my_list += [4]
>>> ur_list
[1, 2, 3, 4]

ur_list

>>> my_list = my_list + [5]
>>> ur_list
[1, 2, 3, 4]

my_list

ur_listmy_list

[1, 2, 3, 4]

[1, 2, 3, 4, 5]

[1, 2, 3, 4]

Mutability in Python

• Once you create them, their value cannot be changed!
• All functions and methods that manipulate these objects return a new object and

do not modify the original object

• List values can be changed
• Sequence operators and functions return a new list; do not modify the original list
• List methods modify what’s in a list
• The mutability of lists has many implications such as aliasing

• Aliasing happens when the value of one variable is assigned to another variable
• Can have multiple names for the same object!

Lists are Mutable

Strings, Ints, Floats are Immutable

Mutability: Take-Aways
• Everything in Python is an object and has a memory address

• When we check to see if two objects is each other we're checking
the memory address of the objects

• When we check to see if two objects == each other, we're checking
the values

• list objects are mutable or changeable. We can change them by:

• ...placing an indexed list on the lefthand side of an assignment
operator: my_lst[-1] = "puppy"

• ...or by using the append operator: my_list += "add this item"
• All other data structures we've seen so far are immutable or
unchangeable --> we always end up creating a new object!

Mutability & Copying Sequences

Copying Sequences
• We can make a copy of sequences using slicing:

• Or through for..loops:

>>> book = ["see", "spot", "run"]
>>> book2 = book[:]
>>> book2
['see', 'spot', 'run'

>>> book3 = []
>>> for word in book:
... book3 += word
>>> book3
['see', 'spot', 'run'

Why might a sequence of
mutable objects require a

different approach?

Mutability & Functions

Mutability and Functions
• What is the value of my_lst at the end of this code?

 def do_something(any_lst):
 any_lst += [42]

 if __name__ == "__main__":
 my_lst = [1, 2]
 do_something(my_lst)

Mutability and Functions
• What is the value of my_lst at the end of this code?

• Why?

 def do_something(any_lst):
 any_lst += [42]

 if __name__ == "__main__":
 my_lst = [1, 2]
 do_something(my_lst)

[1, 2, 42]

When you change a mutable object, everything
that points to it will reflect that change!

List Aliasing
A side effect of mutability

List Aliasing
• Any assignment or operation that creates a new name for an existing

object implicitly creates an alias (a new name)
• Because list objects can change, this leads to some unusual aliasing

side effects

list1 list2

We are not creating a separate copy, but rather creating a second
name for the original list; list2 is an alias of list1

>>> list1 = [1, 2, 3]
>>> list2 = list1

>>> list1 is list2
True

[1, 2, 3]

• Unlike immutable objects (recall our string example with word and
college) , changing the value of list1 will also change the
value of list2:

• They are two names for the same list!

List Aliasing

>>> list1 = [1, 2, 3]
>>> list2 = list1

>>> list1 is list2
True

>>> list1 += [4]
>>> list2

[1, 2, 3, 4]

list1 list2

[1, 2, 3, 4]

• An assignment to a new variable creates a new list

[1, 2, 3]

my_lst

List Aliasing

>>> list1 = [1, 2, 3]
>>> list2 = list1
>>> my_lst = [1, 2, 3]

>>> # same values?
>>> my_lst == list1 == list2

>>> # same identities?
>>> my_lst is list1

True

False

list1 list2

[1, 2, 3]

>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words += ["sky"]
>>> mixed

(Crazy) Aliasing Examples

???

['hello', 'world']

[23, 19]

nums

words

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

[23, 19]

nums

['hello', 'world', 'sky']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples

words

>>> words += ["sky"]

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words += ["sky"]
>>> mixed
[12, [23, 19], 'nice', ['hello', 'world', 'sky']]

>>> mixed[1] += [27]

???

[23, 19, 27]

nums

['hello', 'world', 'sky']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples

words

>>> mixed[1] += [27]

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words += ["sky"]
>>> mixed
[12, [23, 19], 'nice', ['hello', 'world', 'sky']]

>>> mixed[1] += [27]
>>> nums
[23, 19, 27]
>>> mixed
[12, [23, 19, 27], 'nice', ['hello', 'world', 'sky']]

Conclusion
• We cannot change the value of immutable objects such as strings

• Attempts to modify the object ALWAYS creates a new object

• We can change the value of mutable objects such as lists

• Need to be mindful of aliasing; be careful to avoid unintended aliases

• You can create a “true” copy of a list using slicing or a list

• new_lst = my_lst[:]

• new_lst = []

for ele in my_lst:

my_lst += ele

• When using the += operator with lists, it mutates the list.

• Use my_lst = my_lst + [element] if you want to avoid mutation

The end!

