
CS 134:
Querying Sequences

Announcements & Logistics
• HW 4 due today

• Lab 4

• Part 1 starts today/tomorrow, due Wednesday/Thursday

• Test results given immediately

• Part 2 due following Wednesday/Thursday

• Pre-Lab for Part 2: Fix up your Part 1 code!

• Feedback for Lab 1 and Lab 2 are both available in Gradescope

• Final Exam schedule is posted: Wednesday, December 11 at 9:30am

Do You Have Any Questions?

Last Time
• New iteration statement: the while loop

• "Conditional" looping statement
• Useful when we don't know a sequence or stopping condition

ahead of time

Today's Plan
• Finish practice with looping over nested lists and other sequences
• Module vs scripts

• How to import and test functions

• Role of the special if __name__ == "__main__": code
block

sched.py
- example of collecting statistics over data stored

in lists of lists

Modules & Scripts

Modules and Scripts: Example Code

def is_leap(year):
 """Takes a year (int) as input and returns
 True if it is a leap year, else returns False"""

 # if not divisible by 4, return False
 if year % 4 != 0:
 return False

 # is divisible by 4 but not divisible by 100
 # return True
 elif year % 100 != 0:
 return True

 # is divisible by 4 and divisible by 100
 # but not divisible by 400, return False
 elif year % 400 != 0:
 return False

 # is divisible by 400 (and also 4, and 100)
 # return True
 return True

leap.py

Modules and Scripts
• A script is a piece of code saved in a file, e.g., leap.py

• Meant to be executed with: python3 leap.py

• A module is a collection of function definitions saved in a file (like a script)

• Meant to be imported and used by other scripts

• Can be used in interactive python

• Code in a .py file can serve as both a module and a script

• To distinguish between these two modes of operation, we can check the
value of the special variable called __name__

• Note: If a variable starts/ends with double __ in Python, it’s a special variable

Modules and Scripts
• Consider the code we wrote in leap.py

• When leap.py is run as a script then the __name__ variable is set
to the string "__main__"

• When we import the code as a module, the __name__ variable is set
to the name of the module leap

• Why does this matter?

• We often want different behavior when the code is run as a script
vs when it’s imported as a module

 if __name__ == '__main__':
• This is just an if statement with an equality Boolean expression:

• Checks whether the __name__ variable is set to the string
'__main__'. Tells us the code is being run as a script

• We place code that we want to run only when our module is executed as a
script inside the if __name__ == "__main__": block

• Useful for testing code that we do not want to run when we import
functions in interactive Python

Example: Script vs Module
 # name.py
 # test the role of __name__variable
 print("__name__ is set to", __name__, "\n\n")

terminal % python3 name.py
__name__ is set to __main__

terminal % python 3
Python 3.10.8 (main)
Type "help", "copyright", "credits" or "license" for more information.
>>> import name
__ name__ is set to name

function to check if a given year is a leap year

def is_leap(year):
 """Takes a year (int) as input and returns
 True if it is a leap year, else returns False"""

 # if not divisible by 4, return False
 if year % 4 != 0:
 return False

 # is divisible by 4 but not divisible by 100
 # return True
 elif year % 100 != 0:
 return True

 # is divisible by 4 and divisible by 100
 # but not divisible by 400, return False
 elif year % 400 != 0:
 return False

 # is divisible by 400 (and also 4, and 100)
 # return True
 return True

following code only run when run as a script
if __name__ == "__main__":
 # ask user to enter year
 year = int(input("Enter a year: "))

 # call isLeap
 if is_leap(year):
 print(year, "is a leap year!")
 else:
 print(year, "is not a leap year.")

Running leap as a
Script and Module

leap.py

Running leap as a Script and Module
• Running leap.py as a script (notice the code in the if block runs!)

• Running leap.py as a module in interactive Python

terminal$ python3 leap.py
Enter a year: 1900
1900 is not a leap year.
terminal$ python3 leap.py
Enter a year: 2040
2040 is a leap year!

terminal$ python3
Python 3.10.8 (main)
Type "help", "copyrigh...
>>> from leap import *
>>> is_leap(1900)
False
>>> is_leap(2040)
True

Examples:
Script & Module

Processing Sequences
of Strings

Processing Sequences of Strings
• Lots of string & list & sequence operators!
• What to do with it all?!
• Let's play with some lists of names!

Character List
• Given a name_list (of strings) and a character, return a list of all

names that start with that character

def character_list(name_list, char):
 """ Take a list of names/strings and a string character
 and returns a list of names whose name start with that character"""

 # look at each name
 # if it starts with the character
 # accumulate it!
 # when done, return accumulated names

initialize accumulation list

Character List
• Given a name_list (of strings) and a character, return a list of all

names that start with that character

def character_list(name_list, char):
 """ Take a list of names/strings and a string character
 and returns a list of names whose name start with that character"""
 result = []
 for name in name_list:
 if name[0] == char:
 result = result + [name]
 return result

>>> character_list(["lida doret", "mark hopkins", "iris howley", "shikha
singh", "bill jannen", "sam mccauley"], 's')
['shikha singh', 'sam mccauley']

Long & Short Names
• Given a name_list (of strings) and a long and short threshold,

return a list of lists containing the names with first names longer than
long and shorter than short

def longshort_names(name_list, lon, short):
 """ Takes a list of strings/names, and two integers representing a long
 and short threshhold and returns a list of lists holding all names from
 name_list longer than lon, and another of names shorter than short"""

 # look at each name
 # get the first name
 # if it's longer than long
 # accumulate it!
 # if it's shorter than short
 # accumulate it!
 # when done, return accumulated names

initialize long accumulation list
initialize short accumulation list

Long & Short Names
• Given a name_list (of strings) and a long and short threshold,

return a list of lists containing the names with first names longer than
long and shorter than short

def longshort_names(name_list, lon, short):
 """ Takes a list of strings/names, and two integers representing a long
 and short threshhold and returns a list of lists holding all names from
 name_list longer than lon, and another of names shorter than short"""
 long_names = []
 short_names = []
 for name in name_list:
 firstname = get_firstname(name)
 if len(firstname) > lon:
 long_names = long_names + [name]
 elif len(firstname) < short:
 short_names = short_names + [name]
 return [long_names, short_names]

Need to implement this!

• Given a name (string) return a string containing only the name's first
name

def get_firstname(name):
 """ a helper method to grab the first name from a given str, name"""

 # look at each character
 # if it's a space, we're done! return the name
 # otherwise, accumulate this character
 # when we run out of characters, just return the whole name

initialize string accumulator variable

First Name

• Given a name (string) return a string containing only the name's first
name

def get_firstname(name):
 """ a helper method to grab the first name from a given str, name"""
 firstname = ''
 for char in name:
 if char == ' ':
 return firstname
 else:
 firstname = firstname + char
 return name

First Name

>>> get_firstname("lida doret")
'lida'

Long & Short Names
• Given a name_list (of strings) and a long and short threshold,

return a list of lists containing the names with first names longer than
long and shorter than short

def longshort_names(name_list, lon, short):
 """ Takes a list of strings/names, and two integers representing a long
 and short threshhold and returns a list of lists holding all names from
 name_list longer than lon, and another of names shorter than short"""
 long_names = []
 short_names = []
 for name in name_list:
 firstname = get_firstname(name)
 if len(firstname) > lon:
 long_names = long_names + [name]
 elif len(firstname) < short:
 short_names = short_names + [name]
 return [long_names, short_names]

>>> longshort_names(["lida doret", "mark hopkins", "iris howley", "shikha singh", "bill
jannen", "someone b. somebody"],6,5)
[['someone b. somebody'], ['lida doret', 'mark hopkins', 'iris howley', 'bill jannen']]

Last Names
• Given a name_list (of strings) return a list of strings representing

only the last names in name_list

def last_names(name_list):
 """ takes a list of names (strings) and returns just a
 list of last names """

 # look at each name
 # get the last name
 # accumulate it!
 # when done, return accumulated names

initialize accumulation list

Last Names
• Given a name_list (of strings) return a list of strings representing

only the last names in name_list

def last_names(name_list):
 """ takes a list of names (strings) and returns just a
 list of last names """

 lastnames = []
 for name in name_list:
 lastnames = lastnames + [get_lastname(name)]
 return lastnames

Need to implement this!

• Given a name return a string with just last name...or something more
generalizable that can be used for both first and last name?!

def split(a_string, char):
 """ Given a string, a_string, split based upon character, char.
 Return as list.
 """

 # for each character in the string
 # if that character is char
 # append the current string we're building to accumulation list
 # reset the string accumulator
 # otherwise
 # accumulate the character on our current string
 # append the last word we were building, if we were building a word

 # when out of characters, return

Get Last Name

initialize accumulation list
initialize accumulation string

Get Last Name
• Given a a_string (string) return a list containing strings split by
char

def split(a_string, char):
 """ Given a string, a_string, split based upon character, char.
 Return as list.
 """
 result = []
 curr_string = ''
 for ch in a_string:
 if ch == char:
 result = result + [curr_string]
 curr_string = ''
 else:
 curr_string = curr_string + ch
 if curr_string:
 result = result + [curr_string]
 return result

>>> split("lida doret")
['lida', 'doret']
>>> split("madonna")
['madonna']

Last Names
• Given a name_list (of strings) return a list of strings representing

only the last names in name_list

def last_names(name_list):
 """ takes a list of names (strings) and returns just a
 list of last names """

 lastnames = []
 for name in name_list:
 lastnames = lastnames + [split(name, ' ')][-1]
 return lastnames

>>> last_names(["lida doret", "mark hopkins", "iris howley", "shikha singh", "bill jannen",
"someone b. somebody"])
['doret', 'hopkins', 'howley', 'singh', 'jannen', 'somebody']

Querying Sequences

Querying Lists
• Asking for the min/max of a list according to a specified

definition, or filtering the list according to some criteria is a task
that comes up frequently in computer science.

• ex: produce a list of names with the most
number of vowels from a list of names

• Decomposing the problem:
• Will need to know if a character is a vowel or not
• Will need to count the number of vowels
• Will need to keep track of highest number
• If something's higher, overwrite the old max

is_vowel() function
• Consider two versions of an is_vowel() function that takes a

character (a string) as input and returns whether or not it is a vowel

• Use in operator to simplify code (fewer boolean expressions)

def old_is_vowel(c):
 """ is_vowel function """
 return (c == 'a' or c == 'e' or c == 'i' or c == 'o' or c ==
'u' or c == 'A' or c == 'E' or c == 'I' or c == 'O' or c == 'U')

def is_vowel(char):
 """ Simpler is_vowel function """
 return char in 'aeiouAEIOU'

Counting Vowels
• We can use a for loop to implement a count_vowels() function

• Notice how count “accumulates” values in the loop

• Recall, count here is called an accumulation variable

def count_vowels(word):
 """ Takes a string as input and returns
 the number of vowels in it """

 count = 0 # initialize the counter

 # iterate over the word one character at a time
 for char in word:
 if is_vowel(char): # call helper function
 count = count + 1
 return count

Exercise: Name Fun Facts!
• Write a function max_vowels that can be used to identify what the

most number of vowels in all student names are. (Hint: use
count_vowels() which returns the number of vowels in a string.)

• General strategy for finding max in list of sequences?
• Initialize a max value BEFORE the loop to a very small number
• If you see a value bigger than max while looping, update max

def max_vowels(name_list):
 """ Takes a list of strings name_list and returns the number
 representing the maximum number of vowels in a name"""

>>> max_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
5

Exercise: Name Fun Facts!
• Write a function max_vowels that can be used to identify what the

most number of vowels in all student names are. (Hint: use
count_vowels() which returns the number of vowels in a string.)
def max_vowels(name_list):
 """ Takes a list of strings name_list and returns the number
 representing the maximum number of vowels in a name """

 max_so_far = 0

 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count

 return max_so_far

>>> max_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
5

What if we wanted a list of the names with the
maximum number of vowels, instead of count?

Exercise: Name Fun Facts!
• Write a function most_vowels that can be used to compute the

list of students with the most vowels in their first name. (Hint: use
count_vowels() which returns the number of vowels in a string.)
def max_vowels(name_list):
 """ Takes a list of strings name_list and returns the number
 representing the maximum number of vowels in a name """

 max_so_far = 0

 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count

 return max_so_far

>>> max_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
5

New max found, throw out old accumulated values
What if it has the same number as our max?

Add it to our accumulator!

Will need to initialize accumulator variable,
and return that instead of the max num

Exercise: Name Fun Facts!
• Write a function most_vowels that can be used to compute the

list of students with the most vowels in their first name. (Hint: use
count_vowels() which returns the number of vowels in a string.)
def most_vowels(name_list):
 """ Takes a list of strings name_list and returns a list
 of names with the most number of vowels """

 max_so_far = 0
 result = []
 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count
 result = [name]

 elif count == max_so_far:
 result = result + [name]

 return result

>>> most_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
['Genevieve', 'Maximilian']

How would you modify this to compute the
least number of vowels instead?

Exercise: Name Fun Facts!
• Write a function least_vowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
count_vowels() again.)
def most_vowels(name_list):
 """ Takes a list of strings name_list and returns a list
 of names with the most number of vowels """

 max_so_far = 0
 result = []
 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count
 result = [name]

 elif count == max_so_far:
 result = result + [name]

 return result

>>> most_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
['Genevieve', 'Maximilian']

Rather than set the max low, set the min high?

Rather than looking for vals higher, want lower!

Need to use consistent variable names

Exercise: Student Fun Facts!
• Write a function least_vowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
count_vowels() again.)
def least_vowels(name_list):
 """ Takes a list of strings, name_list, and returns a list
 of names with the least number of vowels """

 min_so_far = 100000 # when might this break? Do we have something better?
 result = []
 for name in name_list:
 count = count_vowels(name)
 if count < min_so_far:
 # update found a name with fewer vowels
 min_so_far = count
 result = [name]

 elif count == min_so_far:
 result = result + [name]

 return result

>>> least_vowels(["Lida", "Iris", "Rohit", "Anna", "Genevieve", "Maximilian"])
['Lida', 'Iris', 'Rohit', 'Anna']

The end!

Lab 4

Lab 4 Goals
• In Lab 4 you will implement several voting algorithms and helpful

functions for manipulating election data

• Lab 4 will give you experience with :
• Lists of strings
• Lists of lists of strings
• Loops
• Sequence operators

• Pay close attention to expected input (lists of strings, list of lists of
strings, etc) and expected output

Ballot Data
• Ballot data is represented in various text files
• Each line represents a single voter’s ranked choices

Ballot Data
• 0th ballot is :

• ['kona', 'dickason', 'ambrosia', 'wonderbar', 'house']

• Ranked 'kona' as their first choice, 'dickason' as second, 'ambrosia' as
their third, etc. etc.

Working with Ballot Data

You’ll use string and list operators to
process the data and implement several

different voting algorithms

>>> all_coffee[1] # access second inner list
['kona', 'house', 'ambrosia', 'wonderbar', 'dickason']

>>> all_coffee[0][1] # access second element in first inner list
'dickason'

>>> # access second character of second element of first inner list
>>> all_coffee[0][1][1]
'i'
>>> # create a list of only last elements of inner lists
>>> last_coffee = []
>>> for coffee in all_coffee:
... last_coffee = last_coffee + [coffee[-1]]
>>> last_coffee

Remember
examples

from lecture!

Only use concepts we've
learned from class so far!

The lab is doable using only what
we've learned in class - that's the point
of lab, to practice what we've learned!

