
CS 134:
While Loops & Modules

Announcements & Logistics
• HW 4 due Monday

• Lab 4 (posted later today) will be a Two-Part Lab

• Part 1 will be due next Wed/Thurs @10 pm

• We will return feedback (including from tests not found in runtests.py) on
Gradescope, but you will not be assigned a grade until Part 2

• To receive credit for Part 1, YOU MUST SUBMIT a completed Part I

• You may fix any errors uncovered by the tests during your work on Part II

• Part II will be due one week later than Part I

• Colloquium Today: @2:35pm in Wege Auditorium

Do You Have Any Questions?

Last Time
• Introduced nested lists

• Lists can store any data type, including other lists
• Bracket notation (e.g., var[i]) can be used to access successive

levels of the nesting hierarchy
>>> lst[0] # 0th element of lst

>>> lst[0][2] # 2th element of the 0th element of lst

• Traversed sample nested lists using for loops

Today's Plan
• New iteration statement: the while loop

• Examples of iterating over nested sequences and collect/filter useful
statistics

When you don't know when to stop
(ahead of time):
While Loop

Story so far : for loops
• Python for loops are used to iterate over a fixed sequence

• No need to know the sequence's length ahead of time
• Interpretation of for loops in Python:
 for thing in things:

 # do something with thing
• Other programming languages (like Java) have for loops that require

you to explicitly specify the length of the sequence or a stopping
condition

• Thus Python for loops are sometimes called “for each” loops
• Takeaway: For loops in Python are meant to iterate directly over each

item of a given iterable object (such as a sequence)

 What if We Don’t Know When to Stop?

• We always know the stopping condition of a for loop: when there are
no more elements in the sequence
["A", "chilly", "autumn", "day"]

• Are there contexts where we don’t know when to stop a loop?
• Suppose you want to play a "guessing game" where a user

repeatedly guesses numbers until they correctly guess the secret
number

• How many times should the loop execute?
• Under what condition should the loop end?

The While Loop
A while loop executes the loop body 0 or more times, stopping once
the loop condition evaluates to False:

while <boolean expression>:
 <loop body>
 <loop body>
 ...

Stopping condition

while True:
 print("never leaves")

while False:
 print("never enters")

"Infinite" loop!Loop body never executes

While Loop Example
• Example of a while loop that depends on user input:

prompt = "Please enter a name (type quit to exit): "
name = input(prompt)

while (name != "quit"):
 print("Hi,", name)
 name = input(prompt)
print("Goodbye")

Stopping condition

While Loop Example: Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves2(n):
 while n > 0:
 print(n)
 n = n/2

print_halves2(100)

What does this do?

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves2(n):
 while n > 0:
 print(n)
 n = n/2

print_halves2(100)

Float division!
Be careful!

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves3(n):
 while n > 0:
 print(n)
 n = n//2

print_halves3(100)

What about this loop?

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves3(n):
 while n > 0:
 print(n)
 n = n//2

print_halves3(100)

An infinite loop!
Indentation matters!

if boolean_expresion:

statement 1

statement 2

....

....

end of if

while and if side by side

while boolean_expresion:

statement 1

statement 2

....

....

end of while

Execute body once if the boolean
expression evaluates to true

Keep executing body as long as
the boolean expression (continues)

to evaluate to true

Side by Side: for and while loops

Iteration steps are implicit in a Python
for loop: i takes on values 0, 1, 2, 3, 4

Explicitly initialize variable

for i in range(5):
 print('$' * i)

i = 0
while i < 5:
 print('$' * i)
 i = i + 1

Update value of variable
used in test condition

Test stopping condition

Common while loops steps that we explicitly write:
• Initialize a variable used in the test condition
• Test condition that causes the loop to end when False
• Within the loop body, update the variable used in the test condition

While loop Examples

Let's Code!

Guessing Game
• Write a function that takes an integer "guess" as an argument, and

repeatedly prompts the user to guess a number until they guess
correctly.

• To help, your code should tell the user "guess higher" or "guess
lower" after each incorrect guess.

• When the correct number is guessed, the function should print
"Correct guess!" and then return.

Summary Stats
• Function 1: Count subject

• Given a course subject (string), count the number of times this
subject was taken in the given schedule (list of list of strings)

• Function 1: Most popular subject
• Given a list of course subjects (list of strings) and a course schedule

(list of lists of strings), return a list of course subjects that were taken
the most times throughout the course schedule

The end!

