
CS 134:
Nested Lists

Announcements & Logistics
• HW 4 will be released today

• Lab 4 due today/tomorrow

• Lab 2 graded feedback
• Let us know if you have questions or concerns

Do You Have Any Questions?

Last Time
• Introduced nested for loops

• Discussed how to trace the execution of loops

• Learn about the range sequence type

• Determined when/how to use flag variables

Today's Plan
• Introduce and use nested lists

• More examples of iteration:
• Iterate over nested sequences and collect/filter useful statistics

• Module vs scripts
• How to import and test functions

• Role of the special if __name__ == "__main__": code
block

Nested Lists

Nested Lists
• Remember, any object can be an element of a list.

• This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional

list)!

• Suppose we want to create a list of lists of strings called my_lst

>>> str_lst1 = ['cat'] # list of str
>>> str_lst2 = ['dog'] # list of str

>>> my_lst = ???
>>> my_lst
[['cat'], ['dog']]

[str_lst1] + [str_lst2]

Nested Lists

• Suppose we want to access individual elements from our nested list
• We can do so using the square bracket notation!

• my_lst[row][element] # evaluates to a str
• row is index into “outer” list (identifies which inner list we want). In other

words, defines the “row” you want.

• element is index into “inner” list (identifies which element within the inner
list). In other words, defines the “column” you want.

my_lst = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

row

element

>>> my_lst[1][0]
'dog’

Lists and Data Types
• Python is a loosely typed programming language

• We don’t explicitly declare data types of variables
• But every value still has a data type!

• It’s important to make sure we pay attention to what a function
expects, especially with lists and strings! (remember this in Lab 4)

• Lists of lists of strings versus list of strings:

my_lst = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

my_lst[1][0] is 'dog'

my_lst = ['cat’, 'frog',
 'dog’, 'toad',
 'cow’, 'duck']

my_lst[1][0] is 'f'

Sequence Operations
characters = [['Elizabeth Bennet', 'Fitzwilliam Darcy'],
 ['Harry Potter', 'Ron Weasley'],
 ['Frodo Baggins', 'Samwise Gamgee'],
 ['Julius Ceasar', 'Brutus']]

>>> len(characters) # what is this?
4

>>> len(characters[0]) # what is this?
2

>>> characters = characters + ['Rhett Butler', 'Scarllet O Hara']
[['Elizabeth Bennet', 'Fitzwilliam Darcy'],
 ['Harry Potter', 'Ron Weasley'],
 ['Frodo Baggins', 'Samwise Gamgee'],
 ['Julius Ceasar', 'Brutus'],
 'Rhett Butler',
 'Scarllet O Hara']

Be careful when concatenating lists of
two different types

Looping Over Nested Lists
characters =
[['Elizabeth Bennet', 'Fitzwilliam Darcy', 'Charles Bingley'],
['Harry Potter', 'Ron Weasley', 'Hermoine Granger'],
['Frodo Baggins', 'Samwise Gamgee', 'Gandalf']]

for char_list in characters:
 print(char_list)
 for name in char_list:
 print(name)

Loops over the "outer lists"

Prints each inner list one by one

Loops over the names in each "inner list"

Prints each individual name one by one

Why Nested Lists?
• Nested Lists are useful to represent tabular data

• Example: data stored in google sheets
• Each inner list is a row
• List of lists: collection of all rows (the whole table)
• Lets take an example of real data that we can store as list of lists

Querying Sequences

Querying Lists
• Asking for the min/max of a list according to a specified

definition, or filtering the list according to some criteria is a task
that comes up frequently in computer science.

• ex: produce a list of names with the most
number of vowels from a list of names

• Decomposing the problem:
• Will need to know if a character is a vowel or not
• Will need to count the number of vowels
• Will need to keep track of highest number
• If something's higher, overwrite the old max

is_vowel() function
• Consider two versions of an is_vowel() function that takes a

character (a string) as input and returns whether or not it is a vowel

• Use in operator to simplify code (fewer boolean expressions)

def old_is_vowel(c):
 """ is_vowel function """
 return (c == 'a' or c == 'e' or c == 'i' or c == 'o' or c ==
'u' or c == 'A' or c == 'E' or c == 'I' or c == 'O' or c == 'U')

def is_vowel(char):
 """ Simpler is_vowel function """
 return char in 'aeiouAEIOU'

Counting Vowels
• We can use a for loop to implement a count_vowels() function

• Notice how count “accumulates” values in the loop

• Recall, count here is called an accumulation variable

def count_vowels(word):
 """ Takes a string as input and returns
 the number of vowels in it """

 count = 0 # initialize the counter

 # iterate over the word one character at a time
 for char in word:
 if is_vowel(char): # call helper function
 count = count + 1
 return count

Exercise: Name Fun Facts!
• Write a function max_vowels that can be used to identify what the

most number of vowels in all student names are. (Hint: use
count_vowels() which returns the number of vowels in a string.)

• General strategy for finding max in list of sequences?
• Initialize a max value BEFORE the loop to a very small number
• If you see a value bigger than max while looping, update max

def max_vowels(name_list):
 """ Takes a list of strings name_list and returns the number
 representing the maximum number of vowels in a name"""

>>> max_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
5

Exercise: Name Fun Facts!
• Write a function max_vowels that can be used to identify what the

most number of vowels in all student names are. (Hint: use
count_vowels() which returns the number of vowels in a string.)
def max_vowels(name_list):
 """ Takes a list of strings name_list and returns the number
 representing the maximum number of vowels in a name """

 max_so_far = 0

 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count

 return max_so_far

>>> max_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
5

What if we wanted a list of the names with the
maximum number of vowels, instead of count?

Exercise: Name Fun Facts!
• Write a function most_vowels that can be used to compute the

list of students with the most vowels in their first name. (Hint: use
count_vowels() which returns the number of vowels in a string.)
def max_vowels(name_list):
 """ Takes a list of strings name_list and returns the number
 representing the maximum number of vowels in a name """

 max_so_far = 0

 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count

 return max_so_far

>>> max_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
5

New max found, throw out old accumulated values

What if it has the same number as our max?
Add it to our accumulator!

Will need to initialize accumulator variable,
and return that instead of the max num

Exercise: Name Fun Facts!
• Write a function most_vowels that can be used to compute the

list of students with the most vowels in their first name. (Hint: use
count_vowels() which returns the number of vowels in a string.)
def most_vowels(name_list):
 """ Takes a list of strings name_list and returns a list
 of names with the most number of vowels """

 max_so_far = 0
 result = []
 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count
 result = [name]

 elif count == max_so_far:
 result = result + [name]

 return result

>>> most_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
['Genevieve', 'Maximilian']

How would you modify this to compute the
least number of vowels instead?

Exercise: Name Fun Facts!
• Write a function least_vowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
count_vowels() again.)
def most_vowels(name_list):
 """ Takes a list of strings name_list and returns a list
 of names with the most number of vowels """

 max_so_far = 0
 result = []
 for name in name_list:
 count = count_vowels(name)
 if count > max_so_far:
 # update found a name with more vowels
 max_so_far = count
 result = [name]

 elif count == max_so_far:
 result = result + [name]

 return result

>>> most_vowels(["Lida", "Mark", "Rohit", "Anna", "Genevieve", "Maximilian"])
['Genevieve', 'Maximilian']

Rather than set the max low, set the min high?

Rather than looking for vals higher, want lower!

Need to use consistent variable names

Exercise: Student Fun Facts!
• Write a function least_vowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
count_vowels() again.)
def least_vowels(name_list):
 """ Takes a list of strings, name_list, and returns a list
 of names with the least number of vowels """

 min_so_far = 100000 # when might this break? Do we have something better?
 result = []
 for name in name_list:
 count = count_vowels(name)
 if count < min_so_far:
 # update found a name with fewer vowels
 min_so_far = count
 result = [name]

 elif count == min_so_far:
 result = result + [name]

 return result

>>> least_vowels(["Lida", "Iris", "Rohit", "Anna", "Genevieve", "Maximilian"])
['Lida', 'Iris', 'Rohit', 'Anna']

Nested Lists Additional Examples

Nested Loops and Nested Lists
• Let us trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Nested Loops
• Trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

Nested Loops
• Trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]
[1] 1

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

Nested Loops
• Trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]
[1] 1

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]

Nested Loops
• Trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]
[1] 1

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]
[49] 7[][7,8,9]

[7,8,9] 8[49,64]
[7,8,9] 9[49,64,81]

[[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

Nested Loops
• Trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]
[1] 1

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]
[49] 7[][7,8,9]

[7,8,9] 8[49,64]
[7,8,9] 9[49,64,81]

[[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

Nested Loops
def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Accumulation variable

Accumulation variable

Note the []
Why?!

Nested Loops
def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Accumulation variable

Accumulation variable

Note the []
Why?!

The square brackets ensure that we're
adding a list to a list!Why 2 accumulation variables?!

The inner loop accumulates the items for the
row, the outer loop accumulates the rows

What would be a good function name for mystery2?

Something like power_table

Exercise: Nested Loops & 2 Lists
of Lists simultaneously

Previous Example: Nested Loops
• From last class:

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

[[1,4 ,9],
 [16,25,36],
 [49,64,81]]

def power_table(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(power_table(list_of_lists))

Nested Loops with Range
• What if instead of making a new list of lists of power, we wanted to

add two different (equivalently sized) matrixes of numbers?
• e.g., instead of:

• We wanted:

ll_b4 = [[1,2,3],
 [4,5,6],
 [7,8,9]]

ll_af = [[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

ll1 = [[1,2,3],
 [4,5,6],
 [7,8,9]]

ll2 = [[7,8,9],
 [1,1,1],
 [3,2,1]]
+

ll_af = [[8 ,10,12],
 [5 ,6 ,7],
 [10,10,10]]

Previous Example: Nested Loops
• From last class:

def power_table(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(power_table(list_of_lists))

This needs to change, to add two
items from separate tables

How do we look at items from two
different lists of lists in a nested loop?

Will need 2 different lists of lists

Can use range for parallel iteration!

• Add matrices, instead of squaring matrix

Previous Example: Nested
Loops

def add_matrices(ll1, ll2):
 new_lstlsts = []
 for ri in range(len(ll1)):
 new_row = []
 for ci in range(len(ll1[ri])):
 new_row = new_row + [ll1[ri][ci] + ll2[ri][ci]]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists1 = [[1,2,3], [4,5,6], [7,8,9]]
list_of_lists2 = [[7,8,9], [1,1,1], [3,2,1]]
print(add_matrices(list_of_lists1, list_of_lists2))

Adds two items
from separate tables

Determining range values
from list of list values

2 different lists of lists

Modules & Scripts

Modules and Scripts: Example Code

def is_leap(year):
 """Takes a year (int) as input and returns
 True if it is a leap year, else returns False"""

 # if not divisible by 4, return False
 if year % 4 != 0:
 return False

 # is divisible by 4 but not divisible by 100
 # return True
 elif year % 100 != 0:
 return True

 # is divisible by 4 and divisible by 100
 # but not divisible by 400, return False
 elif year % 400 != 0:
 return False

 # is divisible by 400 (and also 4, and 100)
 # return True
 return True

leap.py

Modules and Scripts
• A script is a piece of code saved in a file, e.g., leap.py

• Meant to be executed with: python3 leap.py

• A module is a collection of function definitions saved in a file (like a script)

• Meant to be imported and used by other scripts

• Can be used in interactive python

• Code in a .py file can serve as both a module and a script

• To distinguish between these two modes of operation, we can check the
value of the special variable called __name__

• Note: If a variable starts/ends with double __ in Python, it’s a special variable

Modules and Scripts
• Consider the code we wrote in leap.py

• When leap.py is run as a script then the __name__ variable is set
to the string "__main__"

• When we import the code as a module, the __name__ variable is set
to the name of the module leap

• Why does this matter?

• We often want different behavior when the code is run as a script
vs when it’s imported as a module

 if __name__ == '__main__':
• This is just an if statement with an equality Boolean expression:

• Checks whether the __name__ variable is set to the string
'__main__'. Tells us the code is being run as a script

• We place code that we want to run only when our module is executed as a
script inside the if __name__ == "__main__": block

• Useful for testing code that we do not want to run when we import
functions in interactive Python

Example: Script vs Module
 # name.py
 # test the role of __name__variable
 print("__name__ is set to", __name__, "\n\n")

terminal % python3 name.py
__name__ is set to __main__

terminal % python 3
Python 3.10.8 (main)
Type "help", "copyright", "credits" or "license" for more information.
>>> import name
__ name__ is set to name

function to check if a given year is a leap year

def is_leap(year):
 """Takes a year (int) as input and returns
 True if it is a leap year, else returns False"""

 # if not divisible by 4, return False
 if year % 4 != 0:
 return False

 # is divisible by 4 but not divisible by 100
 # return True
 elif year % 100 != 0:
 return True

 # is divisible by 4 and divisible by 100
 # but not divisible by 400, return False
 elif year % 400 != 0:
 return False

 # is divisible by 400 (and also 4, and 100)
 # return True
 return True

following code only run when run as a script
if __name__ == "__main__":
 # ask user to enter year
 year = int(input("Enter a year: "))

 # call isLeap
 if is_leap(year):
 print(year, "is a leap year!")
 else:
 print(year, "is not a leap year.")

Running leap as a
Script and Module

leap.py

Running leap as a Script and Module
• Running leap.py as a script (notice the code in the if block runs!)

• Running leap.py as a module in interactive Python

terminal$ python3 leap.py
Enter a year: 1900
1900 is not a leap year.
terminal$ python3 leap.py
Enter a year: 2040
2040 is a leap year!

terminal$ python3
Python 3.10.8 (main)
Type "help", "copyrigh...
>>> from leap import *
>>> is_leap(1900)
False
>>> is_leap(2040)
True

The end!

