
CS134:
Range & Nested Loops

Announcements & Logistics
• Lab 3 sessions are today/tomorrow; due Wednesday/Thursday

• More involved than previous labs, so please use help hours

• Reminder: do NOT use utilities not discussed in class

• We've carefully designed the labs to require only functions & concepts
discussed in class meetings

• We've intentionally ordered material to emphasize algorithmic thinking
and benefit your development as a computer scientist rather than as a
Python-specific programmer

• This means no methods using dot.notation()! (Why?)

• HW 3 due tonight at 10pm on Gradescope

Do You Have Any Questions?

Last Time
• for..Loops allow us to look at each element in a sequence

• The loop variable defines what the name of that element will
be in the loop

• An optional accumulator variable is useful for keeping a
running tally of properties of interest

• Indentation works the same as with if--statements: if it's indented
under the loop, it's executed as part of the loop

• Can extract subsequences using [start:end:step] syntax (slicing)

Different problems may require different decisions with
respect to loop variables, accumulator variables, and whether

you need to index/slice or not!

Today’s Plan
• New sequence type: range

• Explore different combinations of loops
• Loop(s) within a loop (called nesting)

https://docs.python.org/3/library/stdtypes.html#typesseq-range

Review: Sequences in Python
• Sequences in Python represent ordered collections of elements:

e.g., lists, strings, ranges, etc.

• Strings are immutable sequences of characters

• Ranges are immutable sequences of numbers

• Lists can be heterogenous (strings, ints, floats, etc)

• Example: my_list = ["Hello", 42, 23.5, True]

• In CS, we use zero-indexing, so we say that 'Hello' is at
index 0, 42 is at index 1, and so on

• We can access each character of a list using these indices

Summary: Sequence Operations

All of these operators work on both strings and lists!

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq

Ranges

Ranges (another sequence!)
• Python provides an easy way to iterate over numerical sequences using the

range data type, which is another sequence

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second (note: default starting value is 0)

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

>>> range(0, 10)
range(0, 10)

>>> type(range(0, 10))
range

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(0, 10)
range(0, 10)

>>> type(range(0, 10))
range

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Python provides an easy way to iterate over numerical sequences using the
range data type, which is another sequence

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second (note: default starting value is 0)

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

Ranges (another sequence!)

A range is a type of sequence
in Python (like string and list)

To see elements in range, pass
range to list() function

First argument omitted,
defaults to 0

Iterating Over Ranges

i = 0
i = 1
i = 2
i = 3
i = 4

what does this print?

for i in range(5):
 print('$' * i)

$
$$
$$$
$$$$

• In addition to iterating over strings
and lists, we can use a for loop and a
range to simply repeat a task.

• This loop print a pattern to the
screen.

Looks a lot like [0, 1, 2, 3, 4]

Using Range For Parallel Iteration
• This also a really convenient way for iterating over two lists in parallel
• Say we wanted to iterate over two lists
• chars = ['a', 'b', 'c'] and nums = [1, 2, 3]
• And form a new list ['a1', 'b2', 'c3']
• Here’s how we’d do it

chars = ['a', 'b', 'c']
nums = [1, 2, 3]

for each item in chars
 # add current char to matching num
 # accumulate in a list

initialize accumulation variable

>>> char_nums
['a1', 'b2', 'c3']

Using Range For Parallel Iteration
• This also a really convenient way for iterating over two lists in parallel
• Say we wanted to iterate over two lists
• chars = ['a', 'b', 'c'] and nums = [1, 2, 3]
• And form a new list ['a1', 'b2', 'c3']
• Here’s how we’d do it

chars = ['a', 'b', 'c']
nums = [1, 2, 3]
char_nums = []

for i in range(0, len(chars)):
 cnum = chars[i] + str(nums[i])
 char_nums = char_nums + [cnum]

Accumulator Variable

Loop Variable

>>> char_nums
['a1', 'b2', 'c3']

Using range to check palindromes

• Write a function that iterates over a given list of strings word_list,
returns a (new) list containing all the strings in word_list that start
and end with the same character (ignoring case).

• Last class we saw the word == word[::-1] solution
• Another solution: Compare the first and last character, the second and

second-to-last character, etc.

def is_palindrome_range(word) :
 # Test by comparing pairs of characters one at a time.
 # Since we need to compare each char in the "first half"
 # to corresponding char in the "second half",
 # we need to execute len(string) // 2 comparisons
 for i in range(len(word) // 2) :
 if word[i] != word[-(i+1)] :
 return False
 return True

Using range to check palindromes

• Last class we saw the word == word[::-1] solution
• Another solution: Compare the first and last character, the second and

second-to-last character, etc.
• Why do this solution?

def is_palindrome_range(word) :
 # Test by comparing pairs of characters one at a time.
 # Since we need to compare each char in the "first half"
 # to corresponding char in the "second half",
 # we need to execute len(string) // 2 comparisons
 for i in range(len(word) // 2) :
 if word[i] != word[-(i+1)] :
 return False
 return True

Nested Loops

Nested Loops
• A for loop body can contain one (or more!) additional for loops:

• Called nested for loops

• Conceptually similar to nested conditionals
• Example: What do you think is printed by the following Python code?

What does this do?
def mystery_print(word1, word2):
 '''Prints something'''
 for char1 in word1:
 for char2 in word2:
 print(char1 + char2)

mystery_print('123', 'abc')

char1 = 1 char2 = a

char2 = c
char2 = b

char1 = 2 char2 = a

char2 = c
char2 = b

char1 = 3 char2 = a

char2 = c
char2 = b

Inner loop (w/ char2
and word2) runs to
completion on each

iteration of the outer
loop

What does this do?
def mystery_print(word1, word2):
 '''Prints something'''
 for char1 in word1:
 for char2 in word2:
 print(char1 + char2)

mystery_print('123', 'abc')

1a
1b
1c
2a
2b
2c
3a
3b
3c

Nested Loops
• What is printed by the nested loop below?

What does this print?
for letter in ['b', 'd', 'r', 's']:
 for suffix in ['ad', 'ib', 'ump']:
 print(letter + suffix)

What does this print?
for letter in ['b', 'd', 'r', 's']:
 for suffix in ['ad', 'ib', 'ump']:
 print(letter + suffix)

Inner loop (w/ suffixes)
runs to completion on
each iteration of the

outer loop (w/ prefixes)

letter = 'b' suffix ='ad'
'ib'
'ump'

bad
bib
bump

letter = 'd' suffix ='ad'
'ib'
'ump'

dad
dib
dump

letter = 'r' suffix ='ad'
'ib'
'ump'

rad
rib
rump

letter = 's' suffix ='ad'
'ib'
'ump'

sad
sib
sump

Nested Loops and Ranges

We previously used a single for loop and a single range to repeat a task.

• What if we had multiple for loops and multiple ranges? The following loops
print a pattern to the screen. (Look closely at the indentation!)

•

Loops and Ranges to Print Patterns

what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

What are the values of i
and j???

Iterating Over Ranges
what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

j = 0
j = 1
j = 2
j = 3
j = 4

i = 0
i = 1
i = 2
i = 3
i = 4

$
$$
$$$
$$$$

*
**

We've seen this for loop
and pattern before

Same pattern, but with
'*' instead

These for loops are sequential.
One follows after the other.

Iterating Over Ranges

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

i = 0
i = 1
i = 2
i = 3
i = 4
j = 0
j = 1
j = 2
j = 3
j = 4

$
$$
$$$
$$$$

*
**

$

$$

*
$$$

*
**

$$$$

*
**

On right, for loops are nested.
One loop is inside the other.

Iterating Over Ranges

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * i)

$
*
$$
**
**
$$$

$$$$

i, not j!

$

$$

*
$$$

*
**

$$$$

*
**

Range: Take-Aways
• range objects are a new type of sequence that are essentially a range

of integers
• range(0, 10) will generate a sequence of integers from 0 to

10 (exclusive of 10)
• Using range objects with for loops allows us to:

• produce behaviors based on counts of times through a loop
• iterate over sequences using their indices
• iterate over the objects in two sequences simultaneously

Different problems will require different decisions with
respect to sequences and whether you need a range or to

iterate directly over a sequence!

Flag Variables

Starting/Stopping Accumulating
• We've seen many different examples using accumulator variables to

track values of interest:
• Counting the number of vowels
• Maintaining a list of all palindromes, etc.

• However, so far, we've only seen accumulating over an entire sequence
• What if we wanted to only count/track part of a sequence's values?

Flag Variables!

• Identifying the first locations of a character in each string from a list:
• Let's decompose the problem first!

Flag Variables

def first_locations_of(char, list_of_str):
 """ Returns a list containing the index
 where char first appears within each list_of_str
 """

 # for each word in the list of strings

 # for each index in the word
 # if we haven't yet found our character, but we just did
 # add this location to our accumulator
 # update the FLAG VARIABLE to be "found"
 # return our accumulator variable

>>> first_locations_of('e', ["eat", "more", "vegetables"])
[0, 3, 1]

initialize accumulator variable

initialize our FLAG VARIABLE - as "not found"

"location" often implies index,
which often means using

range()

Flag Variables
• Identifying the first locations of a character in each string from a list:

def first_locations_of(char, list_of_str):
 """ Returns a list containing the index
 where char first appears within each list_of_str
 """
 locations = []
 for word in list_of_str:
 found = False # starting new word, haven't found it!
 for i in range(len(word)):
 if not found and word[i] == char: # we found it
 locations = locations + [i]
 found = True
 return locations

>>> first_locations_of('e', ["eat", "more", "vegetables"])
[0, 3, 1]

Flag Variables
• Can often be used as a way to record the "state" that the program is in

• is_found and not is_found is a simple on/off state...
• But other problems could require other (or more!) states!
• Other (or more!) flag variables!

• Like accumulator variables, flag variables are optional
• We only use them when the problem calls for them

• Appropriate use of accumulator and flag variables requires
computational thinking

Summary
• Range is a flexible sequence type often used for indexing or for

executing a loop a certain number of times
• Loops can be nested inside other loops

• Inner loops execute once per iteration of their containing loop
• Accumulator variables can be used to track and/or store values of

interest
• Flag variables are used to determine when to begin or stop tracking

something
• Helps record the "state" of the program

The end!

CS134:
Lab 3

Lab 3: Goals
• In this lab, you will accomplish three tasks:

• Construct a module of tools for examining strings (in
madlibs.py)

• Test your toolbox using simple test cases in runtests.py

• Reuse parts of our toolbox to solve various Madlibs.

• You will gain experience with the following:

• Sequences (strings, lists, and ranges), and associated operators

• Writing simple and nested for loops

Testing Functions: runtests.py
• We have already seen two ways to test a function

• You can run your code 1) interactively or 2) as a script
• Last week, we started using a separate file, runtests.py, to test our code

as a script

• To do this, runtests.py has to import our functions that we
implemented in our main lab file

• Then, we define functions in runtests.py to call the functions we
implemented in the lab, such as is_prefix()

• Remember: We must call functions for them to be executed!

• To ensure that the tests are not run in interactive Python, we place this
command within a “guarded” if block:
if __name__ == '__main__':  

if __name__ == "__main__":
 args = get_command_line_args()
 if len(args) == 0: # if there are no command-line arguments
 print("Please specify the test suite: pre, suf, after, replace, solve")
 else:
 which_question = args[0] # reads the first command-line argument
 if which_question == "pre":
 is_prefix_test1()

def is_prefix_test1() :
 result = is_prefix("pre", "prefix")
 print('is_prefix("pre", "prefix")')
 print(" should return: True")
 print(" yours returned: " + str(result))

Testing Functions: runtests.py
from text_utils import read_stringlist_from_file, format_madlib
from madlibs import is_prefix, is_suffix, all_text_after, \
 get_madlibs_replacement, solved_madlibs

Imports your functions from madlibs.py

Calls the functions you
implemented with test

inputs

Prints expected vs. actual
outputs

Only runs when runtests.py is run as
a script, not imported!

The rest of this code handles the command line
arguments, e.g., python3 runtests.py pre

and determines which functions are called

