CS| 34
Range & Nested Loops

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Announcements & Logistics

Lab 3 sessions are today/tomorrow; due Wednesday/ Thursday
More involved than previous labs, so please use help hours
Reminder: do NOT use utilities not discussed in class

We've carefully designed the labs to require only functions & concepts

We've intentionally ordered material to emphasize algorithmic thinking
and benefit your development as a computer scientist rather than as a
Python-specific programmer

This means no methods using dot.notation()! (Why?)

HW 3 due tonight at |0pm on Gradescope

Do You Have Any Questions?

L ast [Ime

for.Loops allow us to look at each element in a sequence

The loop variable defines what the name of that element will
be In the loop

An optional accumulator variable is useful for keeping a
running tally of properties of interest

Indentation works the same as with if--statements: if it's indented
under the loop, it's executed as part of the loop

Can extract subsequences using [start:end:step] syntax (slicing)

Different problems may require different decisions with
respect to loop variables, accumulator variables, and whether
you need to index/slice or not!

Jloday's Plan

New sequence type: range

Explore different combinations of loops

Loop(s) within a loop (called nesting)

https://docs.python.org/3/library/stdtypes.html#typesseq-range

Review: Sequences In Python

Sequences in Python represent ordered collections of elements:
e.g, lists, strings, ranges, etc.

Strings are immutable sequences of characters
Ranges are iImmutable sequences of numbers
Lists can be heterogenous (strings, ints, floats, etc)
Example: my_list = ["Hello", 42, 23.5, Truel

In CS, we use zero=-indexing, so we say that '"Hello"' is at
index 0, 42 is at index |, and so on

Ve can access each character of a list using these indices

sSummary: Sequence Operations

Operation Resuit
seqg[1] The 1'th item of seq, when starting with O
seq[s1:ee] slice of seq from S1 to ee
seg[si:ee:s] slice of seq from S1 to ee with step S
len(seq) length of seq
segql + seqg’l The concatenation of sedl and seqgZ
X 1n seq True if X is contained within seq
X not 1n segq False if X is contained within seq

All of these operators work on both strings and lists!

Ranges

Ranges (another sequence!)

 Python provides an easy way to rterate over numerical sequences using the
range data type, which is another sequence

* When the range() function is given two integer arguments, it returns a

range object of all integers starting at the first and up to, but not including,
the second (note: default starting value is O)

» lo see the values included in the range, we can pass our range to the
11st() function which returns a list of them

>>> range(@, 10) >>> list(range(@, 10))
range(0, 10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> type(range(0, 10)) >>> list(range(10))
range [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ranges (another sequence!)

 Python provides an easy way to rterate over numerical sequences using the
range data type, which is another sequence

* When the range() function is given two integer arguments, it returns a

range object of all integers starting at the first and up to, but not including,
the second (note: default starting value is O)

* lo see the values included in the range, we can | .
To see elements In range, pass

11st() function which returns a list of them range to List () function
>>> range(@, 10) >>> list(range(@, 10))
range(0, 10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> type(range(0, 10)) >>> list(range(10))
range — > 1, 2, 3, 4, 5, o, 7, 8, 9]

A range Is a type of sequence First argument omitted
in Python (like string and list) defaults to 0 |

terating Over Ranges

what does this print?

for i in range(5): » In addition to iterating over strings
print('$' *x 1i) and lists, we can use a for loop and a
. range to simply repeat a task.
1 =
$ 1=1 » This loop print a pattern to the
$$ L=2 screen.
$$% i=3
$$%% i=4

Looks a lot like [@, 1, 2, 3, 4]

Using Range For Parallel Iteration

- This also a really convenient way for iterating over two lists in parallel

- Say we wanted to rterate over two lists

chars = ['a', 'b', 'c¢'] andnums = [1, 2, 3]
- Andformanewlst ['al', 'b2', 'c3']

Here's how we'd do it

chars = ['a', 'b', 'c']
nums = [1, 2, 3]

1nitialize accumulation variable

for each i1item 1n chars
add current char to matching num
accumulate 1n a list

>>> char_nums
['al', 'b2', 'c3']

Using Range For Parallel Iteration

- This also a really convenient way for iterating over two lists in parallel

- Say we wanted to rterate over two lists

chars = ['a', 'b', 'c'] and nums
- Andformanewlst ['al', 'b2', 'c3']

« Here's how we'd do It

chars = [Ialr Ibl; 'c']
nums = [1, 2, 3] |
char_nums = [] Loop Variable

for i in range(@, len(chars)):

cnum = chars[i] + str(nums[i])
char_nums = char_nums + [cnum]

>>> char_nums
['al', 'b2', 'c3']

[1, 2, 3]

Accumulator Variable

Using range to check palindromes

» Whrite a function that iterates over a given list of strings word_l1st,

returns a (new) list containing all the strings in word_l1st that start
and end with the same character (ignoring case).

+ Last class we saw theword == word|[::-1] solution

» Another solution: Compare the first and last character, the second and
second-to-last character, etc.

def is _palindrome_range(word)

Test by comparing pairs of characters one at a time.
Since we need to compare each char in the "“first half"
to corresponding char in the "“second half",
we need to execute len(string) // 2 comparisons
for i in range(len(word) // 2)

if word[i] '= word[-(i+1)]

return False

return True

Using range to check palindromes

+ Last class we saw theword == word[::-1] solution

» Another solution: Compare the first and last character, the second and
second-to-last character, etc.

- Why do this solution?

def is _palindrome_range(word)

Test by comparing pairs of characters one at a time.
Since we need to compare each char in the "“first half"
to corresponding char in the "“second half",
we need to execute len(string) // 2 comparisons
for i in range(len(word) // 2)

if word[i] '= word[-(i+1)]

return False

return True

Nested Loops

= = 7 \A- -

- A for loop body

Nested Loops

can contain one (or more!) additional for loops:

- (Called nested for loops

- Conceptual

y similar to nested conditionals

+ Example: What ¢

Wh
def

myst

o you think is printed by the following Python code!?

at does this do?
mystery_print(wordl, word2):
"""Prints something'"’
for charl in wordl:
for char2 in word?Z:
print(charl + char?2)

ery_print('123", "abc")

What does this do?
def mystery_print(wordl, word2):

¥y v v

"""Prints something
for charl 1in wordl:
for charZ2 in wordZ2:

print(charl + char?2)

mystery_print('123", "abc')

1la
1b
1c
2d
b
2C
3a
3b
3C

Inner loop (w/ char2 ——
and word2) runs to
completion on each
iteration of the outer
loop

charl

charl

charl

1 char?2
char?2
char?2

2 char?
char?2
char?

3 char?2
char?2
char?2

N T Q9 N T QA N T Q

Nested Loops

- What is printed by the nested loop below!

What does this print?
for letter in ['b", 'd', 'r', 's']:
for suffix in ['ad', "ib', "ump']:
print(letter + suffix)

letter

letter

letter

What does this print?
'd', 'I"

for letter in ['b’

Ibl

Idl

for suffix in ['ad’',
print(letter + suffix)

suffix =

suffix =

suffix =

Iadl
Iibl
Iumpl
Iadl
Iibl
Iumpl
Iadl
Iibl
Iumpl

suffix ='ad'

Iibl

)

Iumpl

bad
bib
bump
dad
dib
dump
rad
rib
rump
sad
sib
sump

|

)

'_i_b',

'S']:
"ump'] :

Inner loop (W/ suffixes)
runs to completion on
each iteration of the
outer loop (w/ prefixes)

Nested Loops and Ranges

= = 7 \A- -

Loops and Ranges to Print Patterns

VWe previously used a single for loop and a single range to repeat a task.

- What if we had multiple for loops and multiple ranges! The following loops
print a pattern to the screen. (Look closely at the indentation!)

what does this print? # what does this print?

for i in range(5): for i in range(5):
print('$" x 1) print('$' *x i)

for j in range(5): for j in range(i):
print('x' x j) print('x' x j)

What are the values of i
and j?7?

terating Over Ranges

what does this print?

We've seen this for loop

for i in range(5):
11 ge(5) and pattern before

print('$' * 1i) -

for j in range(5):

print('x"' % j) —_

Same pattern, but with

1L =20 "*' instead
$ i=1
$$ 1=2
$$% i=3
$$%% 1i=4
j =0
% j=1
% % j=2
% % % j =3
% %k % 3k j =4

These for loops are sequential.

One follows after the other;

terating Over Ranges

what does this print? # what does this print?
for i in range() : for i in range(5):
print($' x 1) print('$' *x i)
for j in range() : for j in range(i):
print('x"' % j) print('x"' % j)
1 =0 1 =0
$ 1=1 $ i=1
$$ 1 =2 ji=0
$$% 1 =3 $$ i=2
$3559% 1i=4 j=20
j =0 .) =1
) o1 $$$ 5 _ 3
* % j =2] =20
% % % j =3 * =1
* % % j=4 ok _ 2

]
$$$$. _ 4

On right, for loops are nested. *

* %k

One loop 1s inside the other.

G Y P W Py W
Il
wWwN P S

* %k 3k

terating Over Ranges

what does this print? # what does this print?
for i in range(5): for 1 1n range(5):
print('$' * i) print('$' x i)
for j in range(i): for j 1n range(i):
print('x"' % i) print('x' % j)
~
i, not j!
=0 1 =0
$ 'L=1 $ 1.=1
* j =0] =0
$$ i =2 $$ 1i=2
* % j=0 J =0
* j=1 * j =1
$$% : $$% . _
% %k 1=3j=® 1_3j=®
% % _ 1 * = 1
%k k k j _ 2 %k k j _ 2
$$$8 . _ 4 $$8$ § _ 4

%k 3k 3k k

%k %k 3k k
%k %k %k %k * %k

%k 3k 3k k * %k 3k

Il
wWwN P S

G Y P W Py W
Il
wN P S

Range: lake-Aways

range objects are a new type of sequence that are essentially a range
of Integers

range(@, 10) will generate a sequence of integers from O to
|0 (exclusive of 10)

Using range objects with Tor loops allows us to:
produce behaviors based on counts of times through a loop
iterate over sequences using their indices

terate over the objects In two sequences simultaneously

Different problems will require different decisions with
respect to sequences and whether you need a range or to
terate directly over a sequence!

Flag Variables

= = 7 \A- -

Starting/Stopping Accumulating

We've seen many different examples using accumulator variables to
track values of interest:

Counting the number of vowels
Maintaining a list of all palindromes, etc.
However, so far, we've only seen accumulating over an entire sequence

What if we wanted to only count/track part of a sequence's values?

Flag Variables!

"location” often implies index, F‘ ag \/arl ab‘eS

which often means using

range()
A

- |dentifying the first locations of a character in each string from a list:

» Let's decompose the problem first!

def first locations_of(char, list of_str):
" Returns a list containing the index
where char first appears within each list_of_str

initialize accumulator variable

for each word in the list of strings

initialize our FLAG VARIABLE - as "not found"

for each index in the word
1f we haven't yet found our character, but we just did

add this location to our accumulator
update the FLAG VARIABLE to be "found"

return our accumulator variable

>>> first_locations_of('e', ["eat", "more", "vegetables"])
[0, 3, 1]

Flag Variables

- |dentitying the first locations of a character in each string from a list:

def first locations_of(char, list of_str):
" Returns a list containing the index
where char first appears within each list_of_str
locations = []
for word in list of str:
found = False # starting new word, haven't found it!
for i in range(len(word)):
if not found and word[i] == char: # we found it
locations = locations + [il]
found = True
return locations

>>> first_locations_of('e', ["eat", "more", "vegetables"])
[0, 3, 1]

Flag Variables

Can often be used as a way to record the "state" that the program is In
1s_found and not 1s_found is a simple on/off state...
But other problems could require other (or more!) states!
Other (or morel) flag variables!

Like accumulator variables, flag variables are optional

We only use them when the problem calls for them

- Appropriate use of accumulator and flag variables requires
computational thinking

Summary

Range is a flexible sequence type often used for indexing or for
executing a loop a certain number of times

Loops can be nested inside other loops
* Inner loops execute once per iteration of their containing loop

Accumulator variables can be used to track and/or store values of
INterest

Flag variables are used to determine when to begin or stop tracking
something

Helps record the "state” of the program

=) @ = Ny
=Y A mISI Ry PS/AWE

CS|34:
L ab 3

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Lab 3: Goals

In this lab, you will accomplish three tasks:

Construct a module of tools for examining strings (in

madlibs. py)
Test your toolbox using simple test cases in runtests.py
Reuse parts of our toolbox to solve various Madlibs.
You will gain experience with the following:
Sequences (strings, lists, and ranges), and associated operators

Writing simple and nested for loops

Testing Functions: runtests.py

+ We have already seen two ways to test a function
* You can run your code |) interactively or 2) as a script

- Last week, we started using a separate file, runtests.py, to test our code
as a script

+ To do this, runtests.py has to import our functions that we
implemented in our main lab file

+ Then, we define functions in runtests. py to call the functions we
implemented in the lab, such as is_prefix()

- Remember:We must call functions for them to be executed!

- lo ensure that the tests are not run in interactive Python, we place this
command within a “guarded’ It block:
1f __name__ == '__main__":

Testing Functions: runtests.py

from text_utils import read_stringlist_from_file, format_madlib
from madlibs import is_prefix, is_suffix, all_text_after, \
get_madlibs_re;lzngEnt, solved _madlibs

def is prefix testl() Imports your functions from mad l1bs. py

result = is_prefix("pre", "prefix")

print('is_prefix("pre", "prefixr71—"7""—

print(" should return: True") Calls the functions you
print(" yours returned: " + str(result)) implemented with test

inputs

Only runs when runtests.py is run as
a script, not imported!
Prints expected vs. actual

if name_ == " main__": outputs

args = get_command_line_args()
if len(args) == 0: # if there are no command-line arguments

print("Please specify the test suite: pre, suf, after, replace, solve")
else:

which_question = args[0] # reads the first command-line argument

if which_question == "pre

is_prefix_test1() The rest of this code handles the command line

arguments, e.g.,, python3 runtests.py pre
and determines which functions are called

