CS134:
Lists and Loops

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Announcements & Logistics

Lab 3 released today
Builds upon everything we've learned so far (including Monday's content):
[terating over sequences (strings, lists, ranges) as well as condrtionals
More "moving pieces" than Lab 2
Please come to help hours If you have questions (or to say hi!)

Prelab due at the beginning of lab

HW 3 due Monday at |10 pm on Gradescope

Do You Have Any Questions?

L ast [Ime

Introduce rteration using for loops to iterate over sequences
Discussed sequence indexing using [] and using the len() function
- And slicing [:]
+ And stepping [:2]

+ And negative indices!

* And 1n operator!

Jloday's Plan

Introduce a new data type (which is also a sequence):
list
Learn more about sequences
operator
* sequence “slicing”

terating over and “accumulating” using lists

., @
\,“0
\,01\0
)
CY—

| Ists

A New Sequence: Lists

A list Is a comma separated, ordered sequence of values.
» These values can be heterogenous (strings, ints, floats, etc)
Example: my_list = ['Hello', 42, 23.5, Truel

Remember, we zero-index! So we say that 'Hello' is at
index O, 42 is at index |, and so on

Like strings, we can access each element of a list using these indices

How Do Indices Work!

Can access elements of a sequence (such as a list) using its index
Indices In Python are both positive and negative

Everything outside of these values will cause an IndexError.

0 1 2 3 4
[Ial’ Iel’ Ill’ IOI’ Iul]
5 4 3) 1

Features of Lists

- Lists are:
- Comma separated, ordered sequences of values
- (Can be :multiple types can appear in the same list

- Mutable (or“changeable™) objects in Pythons. In contrast, strings
are immutable (they cannot be changed).

* We will discuss mutability in more detall soon!

Examples of various Llists:
>>> word_1lst = ["What", "a", "beautiful", "day"]

>>> num_lst = [1, 5, 8, 9, 15, 27]

>>> char_lst = ['a', 'e', 'i', 'o', 'u'l

>>> mixed lst = [3.14, 'e', 13, Truel

>>> type(num_1lst)

list Lists can be heterogeneous (mixed)!

Accessing Elements of Sequences

>>> VO\/\Ie-l_5= [Ial’ Iel’ Iil’ IOI’ Iul]
>>> yowels[@] # character at 0th index?
Ial

>>> yowels[3] # character at 3rd index?
IOI

>>> vowels[4] # character at 4th index?

>>> yowels[5] # will this work? o 1 2 3

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: list index out of range

Negative Indexing

Negative indexing starts from -1, and provides a handy way to access
the last character of a non-empty sequence without knowing its length

0 1 2 3 4

>>> yowels = ['a',
>>> yowels[-1]

"u

Note: Most other languages do not support negative indexing!

Slicing Sequences

Ve can extract subsequences of a sequence using the operator

[:]

For a given sequence var, var[start:end] returnsa new sequence
starting at index ‘start’ (inclusive), ending at index ‘@nd’ (exclusive)

Example: Suppose we want to extract the sublist ['a', 'e"'] from
vowe ls using slicing operator [:]

SSS Vowe'LS= [IaI’ Iel’ Iil’ IOI’ Iul]
>>> # return the sequence from 0th index up to 1st
>>> # (not including 2nd)

>>> yowels[0:2]
[Ial’lel]

Slicing Sequences: Using Step

The (optional) third step parameter to the slicing operator
determines In what direction to traverse, and whether to skip any
elements while traversing and creating the subsequence

By default, start = 0, end = len(), step = +1 (which
means move left to right in increments of one)

T we omit any of the three parameters, slice uses the default values
>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens|[0:5] # start is 0, end is 5, step is +1
[2, 4, 6, 8, 10]
>>> evens[:8:2] # start is 0, end is 8, step is +2
[2, 6, 10, 14]
>>> evens|[::2] # start is 0, end is 10, step 1is +2
[2, 6, 10, 14, 18]

Slicing Sequences: Optional Step

When the step parameter Is set to a negative value it gives a nifty way

1o reverse sequences

Note: start and end are interpreted “backwards” when using a
negative step!
>>> evens [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens[::-1] # reverse the sequence
[20, 18, 16, 14, 12, 10, 8, 6, 4, 2]

>>> evens|[::-2]
[20, 16, 12, 8, 4]

>>> evens[8:0:-1]
[18, 16, 14, 12, 10, 8, 6, 4]

Seqguences In Python: Strings

Sequences In Python represent ordered collections of elements:
e.g,, strings, lists, ranges, etc.

A string is an ordered sequences of individual characters
Example: word = "Hello"

A list is a comma-separated, ordered sequence of values
Example: num_1list = [1, 5, 8, 9, 15, 27]

In CS, we use zero-indexing, so we say that 'H"' is at
index O of word, 8 is at index 2 of num_1ist, and so on

VWe can access each character of a sequence using

>>>word[1] >>> num_list[4]

e' 15

Slicing Sequences

VWe can extract of a sequence using the slicing operator

[:]

For a given sequence var,
var[start:end]

returns a new sequence of the same type that contains the elements
starting at index ‘start’ (inclusive) and ending at index ‘end’ (exclusive)

>>> yowels = 'aeiou'
>>> yowels[0:2]
Iael

>>> num_Llist = [2, 4, 8, 16]
>>> num_Llst = [0:-1] # everything except last
[2, 4, 8.

Slicing Sequences

Ve can extract of a sequence using the slicing operator [:]

For a given sequence var,
var[start:end:step]

returns a new sequence of the same type that contains the elements starting
at index ‘start’ (inclusive), ending at index ‘end’ (exclusive), and using an
(optional) increment of 'step’

By default (if not specified):
start defaults to O (the beginning of string)
end defaults to len(var) (end of string)

step defaults to +1

Examples

Question. How would we reverse a sequence using slicing?

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens[0:5]

[2, 4, 6, 8, 10]

>>> evens[:8:2]

[2, 6, 10, 14!
>>> evens|[::2.
[2, 6, 10, 14, 18]

>>> name = "Ephelia"
>>> name[::-1]
'alilehpE

Testing Membership: 1n Operator

The operator in Python is used to test If a given sequence Is a
subsequence of another sequence; returns True or False

>>> "Williams" in "Williamstown"
True

>>> "w'" 1n "Williams" # capitalization matters
False

>>> dog_1lst = ["Wally", "Velma", "Pixel", "Linus"]
>>> "Linus" 1n dog_lst

True

>>> “Artie" 1in dog_lst
False

sSummary: Sequence Operations

Operation Resuit
seqg[1] The 1'th item of seq, when starting with O
seq[s1:ee] slice of seq from S1 to ee
seg[si:ee:s] slice of seq from S1 to ee with step S
len(seq) length of seq
segql + seqg’l The concatenation of sedl and seqgZ
X 1n seq True if X is contained within seq
X not 1n segq False if X is contained within seq

All of these operators work on both strings and lists!

Other List Operators

= = 7 \A- -

Length of a Sequence

- Python has a built-in Llen () function that computes the length of a
sequence such as a list (or any other sequence like a string)

+ Foralist, len() returns the number of elements in the list

» Thus, any list called words has the following (positive) indices
o, 1, 2, ..., len(words)-1

>>> len(['a', 'e', 'i', 'o', 'u'l)

5

>>> len(["Chels", "Artie", "Pixel", "Linus"])

Testing Membership: 1n Operator

The 1n operator in Python is used to test if a given sequence is a
subsequence of another sequence; returns True or False

>>> Ilill in [Ial’ Iel’ Iil’ IOI Iul]
True
>>> Ilall in [IaI’ IeI’ Iil’ IOI’ Iul]
True

>>> "A" in ['a', 'e', 'i', 'o', 'u'l # caps matter
False

Membership In Sequences

» The 1n operator in Python is used to test if a given sequence is a
subseguence of another sequence; returns True or False

>>> dog_lst = ["Chels", "Artie", "Pixel", "Linus"]
>>> "Linus" 1n dog_lst
True

>>> ""Dizzy" 1n dog_lst
False

not 1n sequence operator

» The not 1n operator in Python returns True if and only if the given
element 1s not in the sequence

>>> dog_1lst = ["Chels", "Artie", "Pixel", "Linus"]
>>> "Linus" 1n dog_lst
True
>>> ""Dizzy" 1n dog_lst
False

>>> "Dizzy" not in dog_lst
True

>>>
True

z" not in "Linus"
—— Note that not 1n also works for strings

| Ist Concatenation

- We can use the + operator to concatenate lists together

+ Creates a new list with the combined elemnnte ~f tha cohlicte

» Does not modify original lists!

>>> g_Llst
>>> p_ st

>>> g_lst +

returns a new list with elements
from alist and blList

["the", "quick", "brown", ' rox"]
[Iljumpedll’ Iloverll’ Ilthell’ lldogsll]
b_lst # concatenate lists

['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'dogs']

>>> g_lst

['the', 'quick', 'brown', 'fox'] a_lst is unchanged!

>>> p_lst =
>>> b 1st #

['jumped',

b_1lst + ["back"] # add "back" to b_lst
since we reassign result to b_lst, b_lst has changed

'over', 'the', 'dogs', 'back']

To change b_Ist, we have to reassign b_lst to the new list

Review: Basic Operations on Sequences

>>> word_1lst = ["What", "a", "beautiful", "day"]
>>> word 1st[3]

Indexing lists using |]
i day i

>>> word_ lst[-1]
i day i

>>> len(word_1st) Finding length of list using len()
4

>>> dog_1lst = ["Chels", "Artie", "Pixel", "Linus"]
>>> dog_lst[2:4]

Slicing lists using [:] (can also use optional step)
['Pixel', 'Linus']

Sequence Operations

Operation Resuit
seqg[1] The 1'th item of seq, when starting with O
seq[s1:ee] slice of seq from S1 to ee
seg[si:ee:s] slice of seq from S1 to ee with step S
len(seq) length of seq
segql + seqg’l The concatenation of sedl and seqgZ
X 1n seq True if X is contained within seq
X not 1n segq False if X is contained within seq

All of these operators work on both strings and lists!

Exercise: Palindromes

#

- ()

Exercise: palindromes

A palindrome Is a string that is the same forwards and backwards

The following strings are all examples of palindromes:

(any string with length 0O)
" (any string with length |)

- "aba"

- "racecar”

The following strings are not palindromes:

"aA" (Case mismatch)

"12321 " (Un-matched space " at end of string)

Exercise: palindromes

- Write a function that iterates over a given list of strings s 1ist,
returns a (new) list containing all the strings in s 1ist that are
the same forward and backwards (ignoring case).

>>> palindromes(["anna", "banana", '"kayak", "rigor", "tacit", "hope"])
['anna', 'kayak']
>>> palindromes(["1313", "1110111", "0101"])
['1110111"']

>>> palindromes(["1level", "stick", "gag"])

['level', 'gag'l

Exercise: palindromes

What is our high level algorithm, in words!

Go through each word in s 1ist.[f the word Is a palindrome,
. After|reaching the end of our lIst, our

append 1t to our”

" shou

st

st + [item]

g

N

bntain all of th

for loop

“accumulator”
variable

palindromes.

function that
returns a boolean

conditional

Solution: palindromes

def get_palindromes(s_list):
'"'"Takes a list of string s_list and returns a new list

containing strings from s_Llist that
are the same forwards and backwards'''

solution = [] # initialize the accumulation variable

1terate over each item 1n seq

for item in s_list:
check if it's a palindrome (use the "range" version)

if is_palindrome(item):
append the palindrom
solution = solution + [ité

ing to accumulation list

How do we implement

return what we accumulated
is palindrome (word)!?

return solution

1S palindrome (word)

What is our high level algorithm, in words!
Multiple correct algorithms exist!

Return true if word Is equal to a reversed copy of word

def is palindrome(word)
use the "slicing trick" to reverse a string
return word == word[::-1]

Loops: lake-Aways

for.Loops allow us to look at each element in a sequence

The loop variable defines what the name of that element will be
in the loop

An optional accumulator variable is useful for keeping a running
tally of properties of interest

Indentation works the same as with if--statements: If it's indented
under the loop, it's executed as part of the loop

=) @ = Ny
=Y A mISI Ry PS/AWE

