
CS134:  
Lists and Loops



Announcements & Logistics
• Lab 3 released today

• Builds upon everything we’ve learned so far (including Monday's content):

• Iterating over sequences (strings, lists, ranges) as well as conditionals

• More "moving pieces" than Lab 2

• Please come to help hours if you have questions (or to say hi!)

• Prelab due at the beginning of lab

• HW 3 due Monday at 10 pm on Gradescope

Do You Have Any Questions?



Last Time
• Introduce iteration using for loops to iterate over sequences 

• Discussed sequence indexing using [ ] and using the len() function
• And slicing [:]
• And stepping [::2]
• And negative indices!

• And in operator!



Today’s Plan
• Introduce a new data type (which is also a sequence):

• list

• Learn more about sequences 

• in operator

• sequence “slicing”
• Iterating over and “accumulating” using lists



Lists



A New Sequence:   Lists
• A list is a comma separated, ordered sequence of values. 

• These values can be heterogenous (strings, ints, floats, etc)

• Example:  my_list = ['Hello', 42, 23.5, True]

• Remember, we zero-index! So we say that 'Hello' is at  
index 0, 42 is at index 1, and so on

• Like strings, we can access each element of a list using these indices



How Do Indices Work?
• Can access elements of a sequence (such as a list) using its index

• Indices in Python are both positive and negative 

• Everything outside of these values will cause an IndexError.

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1

vowels = ['a', 'e', 'i', 'o', 'u']

Look familiar?
Just like string 

sequences!



Features of Lists
• Lists are:

• Comma separated, ordered sequences of values

• Can be heterogenous: multiple types can appear in the same list

• Mutable (or “changeable”) objects in Pythons.  In contrast, strings 
are immutable (they cannot be changed).

• We will discuss mutability in more detail soon!
# Examples of various lists: 
>>> word_lst = ["What", "a", "beautiful", "day"]
>>> num_lst = [1, 5, 8, 9, 15, 27]
>>> char_lst = ['a', 'e', 'i', 'o', 'u']

>>> type(num_lst)
list

>>> mixed_lst = [3.14, 'e', 13, True]

Lists can be heterogeneous (mixed)!



Accessing Elements of Sequences

>>> vowels = ['a', 'e', 'i', 'o', 'u'] 
>>> vowels[0] # character at 0th index?
'a'
>>> vowels[3] # character at 3rd index?
'o'
>>> vowels[4] # character at 4th index?
'u'
>>> vowels[5] # will this work?

Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
IndexError: list index out of range



Negative Indexing
• Negative indexing starts from -1, and provides a handy way to access 

the last character of a non-empty sequence without knowing its length

Note: Most other languages do not support negative indexing!

>>> vowels = ['a', 'e', 'i', 'o', 'u']  
>>> vowels[-1]
'u'

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1



Slicing Sequences
• We can extract subsequences of a sequence using the slicing operator 

[:]

• For a given sequence var, var[start:end] returns a new sequence 
starting at index  ‘start’ (inclusive), ending at index  ‘end’ (exclusive)

• Example: Suppose we want to extract the sublist ['a','e'] from 
vowels using slicing operator [:]

>>> vowels = ['a', 'e', 'i', 'o', 'u']  
>>> # return the sequence from 0th index up to 1st 
>>> # (not including 2nd)
>>> vowels[0:2]
['a','e']



Slicing Sequences: Using Step
• The (optional) third step parameter to the slicing operator 

determines in what direction to traverse, and whether to skip any 
elements while traversing and creating the subsequence

• By default, start = 0, end = len(), step = +1 (which 
means move left to right in increments of one)

• If we omit any of the three parameters, slice uses the default values

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 
>>> evens[0:5] # start is 0, end is 5, step is +1
[2, 4, 6, 8, 10]
>>> evens[:8:2] # start is 0, end is 8, step is +2
[2, 6, 10, 14]
>>> evens[::2] # start is 0, end is 10, step is +2
[2, 6, 10, 14, 18]



Slicing Sequences: Optional Step
• When the step parameter is set to a negative value it gives a nifty way 

to reverse sequences

• Note: start and end are interpreted “backwards” when using a 
negative step!

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 
>>> evens[::-1] # reverse the sequence
[20, 18, 16, 14, 12, 10, 8, 6, 4, 2]
>>> evens[::-2]
[20, 16, 12, 8, 4]
>>> evens[8:0:-1]
[18, 16, 14, 12, 10, 8, 6, 4]



Sequences in Python: Strings
• Sequences in Python represent ordered collections of elements:  

e.g., strings, lists, ranges, etc.

• A string is an ordered sequences of individual characters

• Example:  word = "Hello"

• A list is a comma-separated, ordered sequence of values

• Example:  num_list = [1, 5, 8, 9, 15, 27] 

• In CS, we use zero-indexing, so we say that 'H' is at  
index 0 of word, 8 is at index 2 of num_list, and so on

• We can access each character of a sequence using indices

>>> word[1] 

'e'

>>> num_list[4] 

15



Slicing Sequences
• We can extract subsequences of a sequence using the slicing operator 

[:]

• For a given sequence var,  
 
var[start:end]  
 
returns a new sequence of the same type that contains the elements 
starting at index  ‘start’ (inclusive) and ending at index  ‘end’ (exclusive)

>>> vowels = 'aeiou' 
>>> vowels[0:2] 
'ae' 
>>> num_list = [2, 4, 8, 16] 
>>> num_lst = [0:-1] # everything except last 
[2, 4, 8]  



Slicing Sequences
• We can extract subsequences of a sequence using the slicing operator [:]

• For a given sequence var,  
 
var[start:end:step]  
 
returns a new sequence of the same type that contains the elements starting 
at index  ‘start’ (inclusive), ending at index  ‘end’ (exclusive), and using an 
(optional) increment of ‘step’

• By default (if not specified):

• start defaults to 0 (the beginning of string)

• end defaults to len(var) (end of string)

• step defaults to +1



• Question.  How would we reverse a sequence using slicing?

Examples

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 
>>> evens[0:5] 
[2, 4, 6, 8, 10] 
>>> evens[:8:2] 
[2, 6, 10, 14] 
>>> evens[::2] 
[2, 6, 10, 14, 18]

>>> name = "Ephelia" 
>>> name[::-1] 
'ailehpE



Testing Membership: in Operator
• The in operator in Python is used to test if a given sequence is a 

subsequence of another sequence; returns True or False

>>> "Williams" in "Williamstown"
True

>>> "w" in "Williams" # capitalization matters
False

>>> dog_lst = ["Wally", "Velma", "Pixel", "Linus"] 
>>> "Linus" in dog_lst
True
>>> “Artie" in dog_lst
False



Summary: Sequence Operations

All of these operators work on both strings and lists!

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq



Other List Operators



Length of a Sequence
• Python has a built-in len() function that computes the length of a 

sequence such as a list (or any other sequence like a string)

• For a list, len() returns the number of elements in the list

• Thus, any list called words has the following (positive) indices 
 0, 1, 2, ..., len(words)-1

>>> len(['a', 'e', 'i', 'o', 'u'])
5

>>> len(["Chels", "Artie", "Pixel", "Linus"])
4



Testing Membership: in Operator
• The in operator in Python is used to test if a given sequence is a 

subsequence of another sequence; returns True or False

>>> "i" in ['a', 'e', 'i', 'o', 'u']
True

>>> "a" in ['a', 'e', 'i', 'o', 'u']
True

>>> "A" in ['a', 'e', 'i', 'o', 'u'] # caps matter
False



Membership in Sequences
• The in operator in Python is used to test if a given sequence is a 

subsequence of another sequence; returns True or False

>>> dog_lst = ["Chels", "Artie", "Pixel", "Linus"] 
>>> "Linus" in dog_lst 
True 
>>> "Dizzy" in dog_lst 
False



not in sequence operator 
• The not in operator in Python returns True if and only if the given 

element is not in the sequence

Note that not in also works for strings

>>> "Dizzy" not in dog_lst
True

>>> dog_lst = ["Chels", "Artie", "Pixel", "Linus"] 
>>> "Linus" in dog_lst 
True 
>>> "Dizzy" in dog_lst 
False

>>> "z" not in "Linus"
True



• We can use the + operator to concatenate lists together

• Creates a new list with the combined elements of the sublists 
• Does not modify original lists!

List Concatenation

a_lst is unchanged!

To change b_lst, we have to reassign b_lst to the new list

>>> a_lst = ["the", "quick", "brown", "fox"] 
>>> b_lst = ["jumped", "over", "the", "dogs"]
>>> a_lst + b_lst # concatenate lists
['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'dogs']

returns a new list with elements 
from aList and bList

>>> a_lst 
['the', 'quick', 'brown', 'fox']
>>> b_lst = b_lst + ["back"] # add "back" to b_lst 
>>> b_lst # since we reassign result to b_lst, b_lst has changed
['jumped', 'over', 'the', 'dogs', 'back']



Review: Basic Operations on Sequences

Finding length of list using len( )

Slicing lists using [:] (can also use optional step)

>>> word_lst = ["What", "a", "beautiful", "day"] 
>>> word_lst[3]
'day'

>>> word_lst[-1]

>>> len(word_lst)
4

'day'

>>> dog_lst = ["Chels", "Artie", "Pixel", "Linus"]
>>> dog_lst[2:4]

Indexing lists using [ ]

['Pixel', 'Linus']



Sequence Operations

All of these operators work on both strings and lists!

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq



Exercise: Palindromes



Exercise:  palindromes
• A palindrome is a string that is the same forwards and backwards
• The following strings are all examples of palindromes:

• ""        (any string with length 0)
• "x"      (any string with length 1)

• "aba" 
• "racecar" 

• The following strings are not palindromes:
• "aA"     (Case mismatch)
• "12321 "   (Un-matched space “ “ at end of string)



• Write a function that iterates over a given list of strings s_list, 
returns a (new) list containing all the strings in s_list that are 
the same forward and backwards (ignoring case). 
 

Exercise:  palindromes

>>> palindromes(["anna", "banana", "kayak", "rigor", "tacit", "hope"]) 

['anna', 'kayak'] 

>>> palindromes(["1313", "1110111", "0101"]) 

['1110111'] 

>>> palindromes(["level", "stick", "gag"]) 

['level', 'gag'] 



Exercise:  palindromes
What is our high level algorithm, in words?

• Go through each word in s_list. If the word is a palindrome, 
append it to our “solution list”.  After reaching the end of our list, our 
“solution list” should contain all of the palindromes.

for loop

function that 
returns a boolean

lst = lst + [item]

“accumulator” 
variable

conditional



def get_palindromes(s_list): 
    '''Takes a list of string s_list and returns a new list 
     containing strings from s_list that  
     are the same forwards and backwards''' 
     
    solution = [] # initialize the accumulation variable 

    # iterate over each item in seq 
    for item in s_list: 
        # check if it's a palindrome (use the "range" version) 
        if is_palindrome(item): 
            # append the palindrome string to accumulation list 
            solution = solution + [item] 

    # return what we accumulated 
    return solution 

Solution:  palindromes

How do we implement 
is_palindrome(word)?



is_palindrome(word)

What is our high level algorithm, in words?
• Multiple correct algorithms exist!

• Return true if word is equal to a reversed copy of word

def is_palindrome(word) : 
    # use the "slicing trick" to reverse a string 
    return word == word[::-1]



Loops: Take-Aways
• for..Loops allow us to look at each element in a sequence

• The loop variable defines what the name of that element will be 
in the loop

• An optional accumulator variable is useful for keeping a running 
tally of properties of interest

• Indentation works the same as with if--statements: if it's indented 
under the loop, it's executed as part of the loop



The end!


