
CS 134:
Strings & Iteration

Announcements & Logistics
• Homework 3 will be posted to Course Website, due next Monday @ 10p

• Lab 1 graded feedback will be released today

• Should be available on Gradescope...

• Lab 2 due today 10pm / tomorrow 10pm

• Lab 3 (with a prelab) will be released on Friday

Do You Have Any Questions?

Last Time
• Looked at more complex decisions in Python

• Used Boolean expressions with and, or, not

• Chose between many different options in our code
• if elif else chained conditionals

Today’s Plan
• Introduce iteration using for loops to iterate over sequences

• Revisit an old type in the context of sequences:
• the 'string'

Sequences in Python: Strings
• Sequences in Python represent ordered collections of elements:

e.g., strings, lists, ranges, etc.

• Strings (type str) are ordered sequences of individual characters

• Example: word = "Hello"

• 'H' is the first character of word, 'e' is the second character,
and so on

• Each sequence element has a position, known as its index

• In CS, we often zero-index, so we say that 'H' is at
index 0,'e' is at index 1, and so on

• We can access each character of a string using these indices

How Do Indices Work?
• Can access elements of a sequence (such as a string) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

"W i l l i a m s"
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Note: Most other languages do not support negative indexing!

Accessing Elements of Sequences
'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1>>> word = "Williams"
>>> word[0] # character at 0th index?
'W'
>>> word[3] # character at 3rd index?
'l'
>>> word[7] # character at 7th index?
's'
>>> word[8] # will this work?

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

Sequence Length
• The len(seq) function returns the length of the sequence seq

• Even though we zero-index, we still include the total number of
elements in the length

>>> word = "Williams"
>>> len(word) # total number of characters
8

>>> word[len(word)] # will this work?

>>> word[len(word)-1] # what about this?

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

's'

Iteration Motivation: Counting Vowels
• Problem: Write a function count_vowels(word) that takes a string word

as input and returns the number of vowels in the string (an int)

• We'll create a function is_vowel() to help us:

def count_vowels(word):

 '''Returns number of vowels in the word'''

 # Write code here

>>> count_vowels("Williamstown")

4

>>> count_vowels("Ephelia")

4

is_vowel(char)

 def is_vowel(ch):
 """ Returns True if ch (str) is a vowel"""
 return ch=='a' or ch=='e' or ch=='i' or ch=='o'
or ch=='u' or ch=='A' or ch=='E' or ch=='I' or ch=='O'
or ch=='U'

First Attempt with Conditionals
• Note: val += 1 is shorthand for

 val = val + 1

• Any downsides to this approach?

• What if I change word to
"Williamstown"?

word = "Williams"
counter = 0
if is_vowel(word[0]):

counter += 1
if is_vowel(word[1]):

counter += 1
if is_vowel(word[2]):

counter += 1
if is_vowel(word[3]):

counter += 1
if is_vowel(word[4]):

counter += 1
if is_vowel(word[5]):

counter += 1
if is_vowel(word[6]):

counter += 1
if is_vowel(word[7]):

counter += 1
print(counter)
3

First Attempt with Conditionals
• Using conditionals as shown is repetitive

and does not generalize to arbitrarily
long words

• shorter word would "index out of
bounds"

• longer word would stop too soon
• We need something else that allows us to

“loop” over the characters in an arbitrary
input string

• "For each character word, add 1if that
character is a vowel"

word = "Williams"
counter = 0
if is_vowel(word[0]):

counter += 1
if is_vowel(word[1]):

counter += 1
if is_vowel(word[2]):

counter += 1
if is_vowel(word[3]):

counter += 1
if is_vowel(word[4]):

counter += 1
if is_vowel(word[5]):

counter += 1
if is_vowel(word[6]):

counter += 1
if is_vowel(word[7]):

counter += 1
print(counter)
3

For Loops

Iterating with for Loops
• One of the most common ways to traverse or manipulate a sequence is

to perform some action for each element in the sequence

• This is called looping or iterating over the elements of a sequence

• Syntax of a for loop:

for var in seq:

 # body of loop

 # body of loop

var is called the loop variable
seq is any type of sequence

(for example, a string or a list)

It doesn't have to be called 'var'! It's a variable name!

Iterating with for Loops
• As the loop executes, the loop variable (char in this example) takes

on the value of successive sequence elements, one by one

>>> # small example of for loop
>>> word = "Williams"

>>> for char in word:
... print(char)

W
i
l
l
i
a
m
s

Note. Python for loops are meant specifically for iterating over
sequences and are also called a "for each" loop.

Why might we call it that?

Counting Vowels
• Let us use a for loop to implement count_vowels() function

• What do we need to keep track of as we iterate over word?

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 # Write code here

Counting Vowels
• Notice how count “accumulates” values in the loop

• We call count an accumulation variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0 # initialize accumulator variable(counter)

 # iterate over word one character at a time
 for char in word:
 if is_vowel(char):
 count += 1 # increment accumulator variable
 return count

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 0

'o''B' 's' 't' 'o' 'n'

count_vowels('Boston')

word 'Boston'

Counting Vowels: Tracing the Loop

charLoop variable

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

Exercise:
Vowel Sequences

Exercise: Vowel Sequences
• Define a function vowel_seq(word) that takes a string word and

returns a string containing all the vowels in word in the order they
appear

>>> vowel_seq("Chicago")

'iao'

>>> vowels_seq("protein")

'oei'

>>> vowel_seq("rhythm")

''

What might be other good values to test edge cases?

Exercise: Vowel Sequences
• Accumulation variables don’t have to be counters!
• Can accumulate strings as well: initialize to '' instead of zero

def vowel_seq(word):
 '''Takes word (str) as input and returns
 the vowel subsequence in given word (str)'''
 vowels = "" # initialize accumulation var
 for char in word:
 if is_vowel(char): # if vowel
 vowels += char # accumulate characters
 return vowels

Sequence Operations

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq

The end!

