CS |34
More Conditionals

Announcements & Logistics

Homework 2 is due tonight at 10 pm

Lab 2 was released on Friday
Pre-lab due at the beginning of lab
Full Assisnment due Wed/ Thur |0 pm

You can work on lab machines any time (when there's not a class)
Make sure to keep your work consistent with what is on evo lene

Always pull/clone when you start and add, commit and push to
evolene when done with a work session

Do You Have Any Questions?

L ast [Ime

Wrapped up functions

Discussed return statements and variable scope
Started learning about conditionals

Boolean data type

Making decisions in Python using if else statements

Jloday's Plan

Learn more about 1T e lse statements
Look at more complex decisions In Python
Boolean expressions with and, or, not
Choosing between many different options In our code
1f elif else “chained” conditionals
Using 1mport for using functions across different . py files
VWe are going to cover a lot of material in the next 3 lectures

Make sure you are keeping up and getting help If needed!

xéo'
\,OJXO

\x:’JA
©

Boolean Expressions and |f Statement

» Python expressions that result ina True/False output are called

boolean expressions

» For example, checking It a user's entered number;, num, Is even

- How do we do this! (What is a property of even numbers that we can

use to test this condition?)
» Even numbers are evenly divisible by 2 (remainder of zero)
+ Thus,num % 2 should be zero if and only If num is even

- Now we have a Boolean expression we can test for:num $ 2 ==

* We can implement "conditional statements” in Python using Boolean

expressions and an if-else statement

Python Conditionals (1f Statements)

1f <boolean expression>:

statementl
statement’Z

statement3

else:
statement4

statement5

Note: (syntax) Indentation and
colon after if and else

!

True - False
l bool expression

'\
statementl statement4
“then”
statement2 > statementb
clause
statement3
_/

N

It It 1s raining, then bring an umbrella.
Else, bring your sunglasses.

11 144
else

> clause

Optional Else & Simplitying Conditionals

The else block is . not a requirement (not always needed!)
Sometimes we can simplify conditionals

For example, all three below are equivalent inside the body of a

function that returns True if num is even, and False otherwise

1f num % 2 == 0:

>

1f num % 2 == 0:

return True
return True -}return num % 2 == 0@

else:
return False
return False

Python Conditionals (1f Statements)

- Don't forget proper indentation!

Does your

’[h No, but it can hurt you
pg On bite?

in other ways.

/

Indentation Error:
Expected an indented block

(Credit to u/ufoludek_ on r/Programmert

Some Examples

- ()

#

Nested Conditionals

= = 7 \A- -

More Decisions

+ Sometimes, we need a more complicated conditional structure with

more than 2 options but exactly one option Is possible

- Example: Write a function that takes a temp value in Fahrenhert

f temp Is above 80, print "It i1s a hot one out there.”
- It temp 1s between 60 and 30, print "Nice day out, enjoy!”
» |t temp 1s below 60, print "Chilly day, don't forget a jacket.

- Notice that temp ranges

- |t we find that temp Is greater than 80, no need to check the rest!

Nested Conditionals

1f booleanExpressionl:

statement 1

else:

1f booleanExpression2:
l statement 2

else:

statement 3

Examples:
Nested Conditionals

- ()

#

Attempt |: Chained Conditionals

- We can nest if-else statements (using indentation to distinguish between

matching if-else blocks)

+ Works, but this can quickly become unnecessarily complex (and
hard to read!) This is an example of what NOT to do!

def weatherl (temp):
if temp > 80:
print ("It is a hot one out there.")
else:
if temp >= 60:
print("Nice day out, enjoy!")
else:
if temp >= 40:
print("Chilly day, wear a sweater.")
else:

print("Its freezing out, bring a winter jacket!")

Examples:
Nested Conditionals

- ()

#

Attempt 2: Chained Ifs

- What If we use a bunch of if statements (w/o else) one after the other

to solve this problem!?

- What are the advantages/disadvantages of this approach?

def weather2(temp):
if temp > 80:
print ("It is a hot one out there.")
if temp >= 60 and temp <= 80:
print("Nice day out, enjoy!")
if temp <60 and temp >= 40:

print("Chilly day, wear a sweater")
if temp < 40:

print("Its freezing out, bring a winter jacket!")

Attempt 2: Chained Ifs

- What If we use a bunch of if statements (w/o else) one after the other

to solve this problem!?

- What are the advantages/disadvantages of this approach?

» Adv: More readable/less complex than Attempt |
» Disad: Unnecessary condition checking

def weather2(temp):

if temp > 80:
print ("It is a hot one out there.")

if temp >= 60 and temp <= 80:
print("Nice day out, enjoy!")

if temp <60 and temp >= 40:
print("Chilly day, wear a sweater")

if temp < 40:

print("Its freezing out, bring a winter jacket!")

it Elif Else Statements

- Fortunately, there Is a simpler way to specify several options by

chaining conditionals

if booleanExpressionl: A better approach that avoids too
many indented blocks and improves
statement 1 code readability

elif booleanExpression2:

statement 2

else: Can have any number of e L1f

statement 3 condrtions, but only one
(optional) e lse (at the end)

Examples:
If-Elif-Else

- ()

#

Attempt 3: Chained Conditionals

- We can chain together any number of elif blocks

- The else block is optional, but usually good to include

def weather3(temp):
if temp > 80:
print ("It is a hot one out there.")
elif temp >= 60:
print("Nice day out, enjoy!")
elif temp >= 40:

print("Chilly day, wear a sweater.")
else:

print("Its freezing out, bring a winter jacket!")

Flow Diagram: Chained Condrtionals

True

E' T:rue Fals.e
L Y

IMPORTANT: In the moment one of the
tests is True, the associated statements are

executed and the chained conditional is exited.
Only in the case when tests are False, we
continue checking to find a True test.

True False
testl

Takeaway of Condrtionals

Chained condrtionals avoid messy nested conditionals
Chaining reduces complexity and improves readabllity

Since only one branches in a chained 1f—elif-else block
evaluates to True, using them avoids unnecessary checks incurred by

chaining It statements one after the other

Exercise:
Leap Year Function

=) @ m \ /e

Exercise: leap_year Function

» Let’s write a function 1S__Lleap that takes a year (int) as input, and
returns True if year is a leap year, else returns False

- When is a given year a leap year?

- "Every year that is exactly divisible by four is a leap year, except for years
that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

229
)

@

How do we structure this logic
using booleans and conditionals?

Exercise: leap_year Function

+ Let’s write a function 15__leap that takes a year (int) as input, and
returns True if year is a leap year, else returns False

- When is a given year a leap year?

- "Every year that is exactly divisible by four is a leap year, _
they are exactly divisible by 400." |
T Decomposition!

- If year is not divisible by 4: year is not a leap year

Exercise: LeapYear Function

def is_leap(year):
""" Takes a year (int) as input and returns
True 1f it is a leap year, else returns False"""

Write code here!

Leap years between from 900 to 2060:

Not a leap year

m 1904 1908 1912 1916 1920 1924 1928 1932 1936
1940 1944 1948 1952 1956 1960 1964 1968 1972 1976
1980 1984 1988 1992 1996 2000 2004 2008 2016 2020

m 2028 2032 2036 2040 2044 2048 2052 2056 2060

Next leap year

https://www.calendarbest/leap-years.html

Exercise: LeapYear Function

def is_ leap(year):
"""Takes a year (int) as input and returns
True 1f 1t i1s a leap year, else returns False"""
1f not divisible by 4, return False
if year % 4 = 0:
return False

1s divisible by 4 but not divisible by 100
return True
elif year % 100 '= 0:

return True

1s divisible by 4 and divisible by 100
but not divisible by 400, return False
elif year % 400 '= 0:

return False

1s divisible by 400 (and also 4, and 100)
return True
return True

1mporting functions

=) @ B \ /R
o HB8 GBI S

Using functions In different files

Especially when we're using larger amounts of code, we'll want to use

functions In different files than the one it's defined In

To do this, we use the following syntax:

from <name of file without extension> 1mport <name of function w/o arguments>

ex. Trom leap import 1s_leap

=) @ = Ny
=Y A mISI Ry PS/AWE

CS|34:
L ab 02

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Lab 2: Goals

In this lab, you will be writing a non-trivial Python script to compute

the current day of the week in Williamstown

igsh-level learning goals:
Defining and calling functions.
Using arithmetic operators in Python.
Testing your code in interactive Python.

Writing conditional (if else) statements to make decisions In

your code

How Computers Keep Track of Time

On Unix machines time is represented by the number of seconds,
starting from the beginning of Thursday, January |, 1970

The date is arbitrary, but Is called the Unix "epoch”
In Python we can access this value using the time module()
The time value 1s In UTC (current time In England)

While the value is a float, we only need the integer part for this lab

$ python3
>>> from time import time

>>> time ()
1612800680.9091752

Fisuring Out the Day of the Week

The time module gives us the total number of seconds since the Epoch

Our goal: Use this value to figure out what the current day of the week is
in England (for now, later we will deal with timezones)

Approach (break down the problem):

How many minutes have elapsed since the Epoch!?

How many hours! Days!

Suppose the number of days divide evenly by 7/.What day of the
week Is 17 What if they do not divide evenly!

How do we do this using arithmetic operations?

Hint: Think about our example involving NnUM_co1ns from last week

utc_day(time_value)

You will write this function first!

This function takes a floating point number as a
parameter, time_value

time_value represents the UTC time in England
time_value is the total number of seconds since the Epoch
This function should return:

A number between 0-6, which is the day of the week
corresponding to time_value

Where O Is Sunday, | 1s Monday, .., 6 1s Saturday

=) @ = N
=Y A mISI Ry PS/AWE

