
CS 134:
More Conditionals

Announcements & Logistics
• Homework 2 is due tonight at 10 pm

• Lab 2 was released on Friday
• Pre-lab due at the beginning of lab
• Full Assignment due Wed/Thur 10 pm

• You can work on lab machines any time (when there's not a class)
• Make sure to keep your work consistent with what is on evolene

• Always pull/clone when you start and add, commit and push to
evolene when done with a work session

Do You Have Any Questions?

Last Time
• Wrapped up functions

• Discussed return statements and variable scope

• Started learning about conditionals

• Boolean data type
• Making decisions in Python using if else statements

Today’s Plan
• Learn more about if else statements
• Look at more complex decisions in Python

• Boolean expressions with and, or, not

• Choosing between many different options in our code
• if elif else “chained” conditionals

• Using import for using functions across different .py files

• We are going to cover a lot of material in the next 3 lectures
• Make sure you are keeping up and getting help if needed!

Boolean Expressions and If Statement
• Python expressions that result in a True/False output are called

boolean expressions

• For example, checking if a user's entered number, num, is even

• How do we do this? (What is a property of even numbers that we can
use to test this condition?)

• Even numbers are evenly divisible by 2 (remainder of zero)

• Thus, num % 2 should be zero if and only if num is even

• Now we have a Boolean expression we can test for : num % 2 == 0

• We can implement "conditional statements" in Python using Boolean
expressions and an if-else statement

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.
Else, bring your sunglasses.

Note: (syntax) Indentation and
colon after if and else

Optional Else & Simplifying Conditionals
• The else block is optional: not a requirement (not always needed!)

• Sometimes we can simplify conditionals

• For example, all three below are equivalent inside the body of a
function that returns True if num is even, and False otherwise

if num % 2 == 0:

return True

else:

return False

return num % 2 == 0

if num % 2 == 0:

return True

return False

Python Conditionals (if Statements)
• Don’t forget proper indentation!

(Credit to u/ufoludek_ on r/ProgrammerHumor)

Some Examples

Nested Conditionals

More Decisions
• Sometimes, we need a more complicated conditional structure with

more than 2 options but exactly one option is possible

• Example: Write a function that takes a temp value in Fahrenheit

• If temp is above 80, print "It is a hot one out there."

• If temp is between 60 and 80, print "Nice day out, enjoy!"

• If temp is below 60, print "Chilly day, don’t forget a jacket."

• Notice that temp can only be in one of those ranges

• If we find that temp is greater than 80, no need to check the rest!

Nested Conditionals
if booleanExpression1:

 statement 1

 ...

else:

 if booleanExpression2:

 statement 2

 ...

 else:

 statement 3

 ...

Examples:
Nested Conditionals

Attempt 1: Chained Conditionals
• We can nest if-else statements (using indentation to distinguish between

matching if-else blocks)

• Works, but this can quickly become unnecessarily complex (and
hard to read!) This is an example of what NOT to do!

Examples:
Nested Conditionals

Attempt 2: Chained Ifs
• What if we use a bunch of if statements (w/o else) one after the other

to solve this problem?

• What are the advantages/disadvantages of this approach?

Attempt 2: Chained Ifs
• What if we use a bunch of if statements (w/o else) one after the other

to solve this problem?

• What are the advantages/disadvantages of this approach?

• Adv: More readable/less complex than Attempt 1
• Disad: Unnecessary condition checking

if booleanExpression1:

 statement 1

 ...

elif booleanExpression2:

 statement 2

 ...

else:

 statement 3

 ...

If Elif Else Statements
• Fortunately, there is a simpler way to specify several options by

chaining conditionals

A better approach that avoids too
many indented blocks and improves

code readability

Can have any number of elif
conditions, but only one

(optional) else (at the end)

Examples:
If-Elif-Else

Attempt 3: Chained Conditionals
• We can chain together any number of elif blocks

• The else block is optional, but usually good to include

Flow Diagram: Chained Conditionals

Takeaway of Conditionals
• Chained conditionals avoid messy nested conditionals

• Chaining reduces complexity and improves readability

• Since only one branches in a chained if-elif-else block
evaluates to True, using them avoids unnecessary checks incurred by
chaining if statements one after the other

Exercise:
Leap Year Function

Exercise: leap_year Function
• Let’s write a function is_leap that takes a year (int) as input, and

returns True if year is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

How do we structure this logic
using booleans and conditionals?

Exercise: leap_year Function
• Let’s write a function is_leap that takes a year (int) as input, and

returns True if year is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

• If year is not divisible by 4: year is not a leap year

• Else (divisible by 4) and if not divisible by 100: is a leap year

• Else (divisible by 4 and by 100) and not divisible by 400: not a leap year

• Else (if we make it to here must be divisible by 400): is a leap year

Decomposition!

https://www.calendar.best/leap-years.html

Exercise: leapYear Function

Leap years between from 1900 to 2060:
Not a leap year

Next leap year

def is_leap(year):
 """ Takes a year (int) as input and returns
 True if it is a leap year, else returns False"""

 # Write code here!

Exercise: leapYear Function
def is_leap(year):
 """Takes a year (int) as input and returns
 True if it is a leap year, else returns False"""

 # if not divisible by 4, return False
 if year % 4 != 0:
 return False

 # is divisible by 4 but not divisible by 100
 # return True
 elif year % 100 != 0:
 return True

 # is divisible by 4 and divisible by 100
 # but not divisible by 400, return False
 elif year % 400 != 0:
 return False

 # is divisible by 400 (and also 4, and 100)
 # return True
 return True

importing functions

Using functions in different files
• Especially when we're using larger amounts of code, we'll want to use

functions in different files than the one it's defined in

• To do this, we use the following syntax:
from <name of file without extension> import <name of function w/o arguments>

• ex: from leap import is_leap

The end!

CS134:
Lab 02

Lab 2: Goals
• In this lab, you will be writing a non-trivial Python script to compute

the current day of the week in Williamstown

• High-level learning goals:

• Defining and calling functions.

• Using arithmetic operators in Python.

• Testing your code in interactive Python.

• Writing conditional (if else) statements to make decisions in
your code

How Computers Keep Track of Time
• On Unix machines time is represented by the number of seconds,

starting from the beginning of Thursday, January 1, 1970

• The date is arbitrary, but is called the Unix "epoch"

• In Python we can access this value using the time module()

• The time value is in UTC (current time in England)

• While the value is a float, we only need the integer part for this lab

Figuring Out the Day of the Week
• The time module gives us the total number of seconds since the Epoch

• Our goal: Use this value to figure out what the current day of the week is
in England (for now, later we will deal with timezones)

• Approach (break down the problem):

• How many minutes have elapsed since the Epoch?

• How many hours? Days?

• Suppose the number of days divide evenly by 7. What day of the
week is it? What if they do not divide evenly?

• How do we do this using arithmetic operations?

• Hint: Think about our example involving num_coins from last week

utc_day(time_value)
• You will write this function first!

• This function takes a floating point number as a
parameter, time_value

• time_value represents the UTC time in England

• time_value is the total number of seconds since the Epoch

• This function should return:

• A number between 0-6, which is the day of the week
corresponding to time_value

• Where 0 is Sunday, 1 is Monday, ..., 6 is Saturday

The end!

