
CS134:
Functions, Booleans, and

Conditionals

CS Colloquium Today
• Almost Every Friday
• Time: 2:35pm
• Normal Location: TCL 123 (Wege Auditorium)
• Today: Bryan Perozzi (Google)

• Giving your Graph a Voice: Graph Representations and Large
Language Models

Gradescope
• Thanks for bearing with us as we figure out Gradescope
• It's the first time we're using it, so there's bound to be

some issues!
• Plus, the "Homeworks" are one of their new features, still

in testing
• Telling cs134staff@williams.edu promptly is the best path to

get things addressed quickly!

mailto:cs134staff@williams.edu

Announcements & Logistics
• Homework 2 is due Monday 10 pm

• Ten multiple-choice questions (posted to course website)

• Try to answer them using pencil and paper first

• Can verify answers using interactive Python if you wish

• Lab 2 posted today, due Wed 10pm / Thur 10pm

• Prelab: warm-up pencil-and-paper exercise due at the start of lab

• Read/think/work on the assignment ahead of your scheduled lab section

• Personal machine setup: reminder that you can (optionally) setup your machine

• Setup instructions under Resources on Course Webpage

Do You Have Any Questions?

Last Time
Discussed functions in greater detail
• Reviewed the built-in functions:

• input(), print(), int(), float(), str()
• Note: Some functions return an explicit value

• int(), input(), our definition of square()
• Other functions “do something” but don’t explicitly return

• print(), user-defined functions without explicit return statement
like printMessage()

• Such functions “secretly” (or implicitly) return a None value
(more on this today!)

Today’s Plan
• Write a non-trivial function together in VS Code
• Wrap up discussion of functions

• Discuss return statements and variable scope in more detail
• Start learning about conditionals (Lab 2!)

• Boolean data type
• Making decisions in Python using if else statements

Variable Scope

Variable Scope
• Local variables: An assignment to a variable within a function

definition creates/modifies a local variable

• Local variables only exist within a function’s body, and cannot be
referred to outside of the function’s body

• Parameters are also local variables that are assigned a value when the
function is invoked

def square(num):

return num*num

>>> square (5)
25
>>> num
NameError: name 'num' is not defined

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

What is printed here?

What is printed here?

What is returned?

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

my_func
Some
code

val

newVal

Global Scope

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

my_func
Some
code

val 3

newVal

Global Scope

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

my_func frame

val

print('local', val)

return val

my_func
Some
code

val 3

newVal eww

val = val + 1

Global Scope

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

my_func frame

val

val = val + 1

4

return val 4

my_func
Some
code

val 3

newVal eww

print('local', val)

Global Scope

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

myfunc frame

val

val = val + 1

4

return val 4

my_func
Some
code

val 3

newVal 4

Information flow out of a function is only through return statements!

Function frame destroyed
(and all local variables lost)

after return from call

print('local', val)

Global Scope

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

myfunc frame

val

val = val + 1

4

return val 4

my_func
Some
code

val 3

newVal 4

print('local', val)
What is printed here?

scope.py

Global Scope

Example:
Making Change

Exercise: Making Change
• Suppose you are a cashier and you need to make change for a given

number of cents using only quarters, dimes, nickels, and pennies

• Most cashiers use the following greedy strategy to make change using
the fewest number of coins:

• Use as many quarters as possible first, then as many dimes as
possible next, and so on, using pennies last

• Assume you have an unlimited supply of each coin

Exercise: Making Change
• Problem. Let us write a function make_change(cents) that takes

as a parameter an integer cents and returns the fewest number of

coins needed to make change for cents cents

• Approach: Decompose the problem into smaller pieces

• What is the maximum number of quarters we can use?

• q = cents // 25
• How much money is left after we use q quarters?

• cents = cents % 25
• For the remaining cents, what is the maximum number of dimes can

we use?

Example Code

Ignore this for now... We will come
back to this soon.

Let’s implement this together!

Solution

Two Ways To Test Our Code

2) Test interactively by importing the function in
interactive Python. We’ll see this again in Lab 2.

1) Write code in a file change.py. Execute the
program from the Terminal using python3.

Functions with Multiple
Parameters

• Functions can take any number of parameters:
• Listed one by one in the definition, separated by commas
• Order matters! Order of parameters in definition maps to

order of arguments at function call

• How to call this function to compute the 10th power of 2?

Function Parameters

def exp(num, k):
 """Return the kth power of given number num"""
 return num ** k

Review: Return Statements
• return only has meaning inside of a function body

• A function definition may have multiple return statements, but only
the first one encountered is executed! (Why?)

• We will see functions with multiple returns very soon

• Code that exists after a return statement is unreachable and will
not be executed (Why?)

• Functions without an explicit return statement implicitly return None

• Be careful when None returning functions are used in expressions
or within other function calls

Function Calls are Expressions
• Return value of a function “replaces” the function call

def three():
 return 3

x = three()
print(x)
print(three())

two_x = three() + three()
print(two_x)
print(three() + three())

y = print(three())
print(y)
print(print(three())

>>> x = three()
>>> print(x)
3
>>> print(three())
3

>>> two_x = three()+three()
>>> print(two_x)
6
>>> print(three() + three())
6

>>> y = print(three())
3
>>> print(y)
None
>>> print(print(three()))
3
None

Moving On:
Making Decisions

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If you are testing positive for COVID, wear a mask.

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If you are testing positive for COVID, wear a mask.

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If you are testing positive for COVID, wear a mask.

Is it raining?

Is it yellow? red? green?

Is your test positive? Has it been less than 10 days?

Boolean Types
• Python has two values of bool type, written True and False

• These are called logical values or Boolean values, named after 19th
century mathematician George Boole

• True and False must be capitalized!

• Boolean values naturally result when answering a yes or no question

• Is 10 greater than 5? Yes/True

• Is 23 an even number? No/False

• Does 'Williams' begin with a vowel? No/False

• Boolean values result naturally when using relational and logical
operators

Relational Operators
< (less than), > (greater than)

<= (less than or equal to), > = (greater than or equal to)

== (equal to), ! = (not equal to)

>>> 3 > 5
False
>>> 5 != 6
True
>>> 5 == 5
True

Reminder that the single = is an assignment, double == is equality

Relational Operators
< (less than), > (greater than)

<= (less than or equal to), > = (greater than or equal to)

== (equal to), ! = (not equal to)

>>> 0 == True
False
>>> True == True
True
>>> int(False)
0
>>> int(True)
1

Reminder that the single = is an assignment, double == is equality

Logical Operators
• Logical operators and, or, not are used to combine Boolean values

• For two Boolean expressions exp1 and exp2

• not exp1 (! in other languages) returns the opposite of exp1

• exp1 and exp2 (&& in other languages) is True iff
exp1 and exp2 are True

• exp1 or exp2 (|| in other languages) is True iff either
exp1 or exp2 are True
Truth Table for or Truth Table for and

Boolean Expressions and If Statement
• Python expressions that result in a True/False output are called

boolean expressions

• For example, checking if a user's entered number, num, is even

• How do we do this? (What is a property of even numbers that we can
use to test this condition?)

• Even numbers are evenly divisible by 2 (remainder of zero)

• Thus, num % 2 should be zero if and only if num is even

• Now we have a Boolean expression we can test for : num % 2 == 0

• We can implement "conditional statements" in Python using Boolean
expressions and an if-else statement

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.
Else, bring your sunglasses.

Note: (syntax) Indentation and
colon after if and else

Optional Else & Simplifying Conditionals
• The else block is optional: not a requirement (not always needed!)

• Sometimes we can simplify conditionals

• For example, all three below are equivalent inside the body of a
function that returns True if num is even, and False otherwise

if num % 2 == 0:

return True

else:

return False

return num % 2 == 0

if num % 2 == 0:

return True

return False

Python Conditionals (if Statements)
• Don’t forget proper indentation!

(Credit to u/ufoludek_ on r/ProgrammerHumor)

Example

Conditional Statements: If Else
• Consider the following functions that check if a number is even or odd

def print_even(num):
 '''Takes a number as parameter, prints Even if
it's even,
 else prints odd '''
 if num % 2 == 0: # if even
 print("Even")
 else:
 print("Odd")

def is_even(num):
 ''' Takes a number as parameter, returns True if
 it's even, else returns False'''
 return num %2 == 0

MAIN PROGRAM
print("3? " + print_even(3))
print("22? " + print_even(22))

print("is_even(3)? " + str(is_even(3)))
print("is_even(22)? " + str(is_even(22)))

Takeaways
• Chained conditionals avoid messy nested conditionals

• Chaining reduces complexity and improves readability

• Since only one branches in a chained if-else block evaluates to
True, using them avoids unnecessary checks incurred by chaining if
statements one after the other

sequence functions conditionals

The end!

