
CS134:
Python Types and Expressions

Announcements & Logistics
• HW 1 due today at 10 pm (Google form)
• Lab 1 today/tomorrow, due Wed/Thur at 10pm

• Goal: Setup computers, gain experience with the workflow and tools
• Start with some short and sweet Python programs

• Important: Login to Lab machines using OIT credentials
• clone/pull/push to evolene.cs.williams.edu with CS credentials

• You must have received an email about CS account info!

• Student help hours and TA hours have started

• Check calendar on course webpage

• Questions?

http://evolene.cs.williams.edu

Announcements & Logistics
• POGILs:

• I don't collect them! They're practice for you!
• Feel free to make mistakes, try things out!
• Make your best guess! You'll remember guessing and being wrong

better than me just telling you the content.
• We often won't get through the entire activity: finish them outside of class

• More practice = more learning
• We don't have answer sheets for POGILs:

• Encourages you to ask the computer
• ...or to reach out and talk to peers, TAs, instructors, etc.
• Engage with the course content!

Announcements & Logistics
• Lecture Videos:

• We'll try to post lecture recordings or videos, as time allows
• (although, it's been my experience that these are under-used)

• They'll show up on the 'Lectures' page on the course website

Last Time

• Discussed course logistics
• Reviewed syllabus
• Important take-aways:

• cs134 course website: place where everything is hosted
• Encouraged to use lab machines but resources to setup your personal

machines are available on the website
• Reach out to us or TAs if you get stuck

http://cs.williams.edu/~cs134

Today’s Plan
• Learn lots of new vocabulary words!
• Discuss data types and variables in Python

• int, float, boolean, string

• Learn about basic operators
• arithmetic, assignment

• Experiment with built-in Python functions and expressions
• int(), input(), print()

• Investigate different ways to run and interact with Python

Aspects of Languages
• Primitive constructs

• English:
• words, punctuation

• Programming languages:
• numbers, strings, simple operators

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Aspects of Languages
• Syntax

• English:
• “boy dog cat” (incorrect), “boy hugs cat” (correct)
• “Let’s eat grandma!” (probably incorrect), “Let’s eat, grandma!”

(correct)
• Programming language:

• “hi”5 (incorrect), 4*5 (correct)

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Aspects of Languages
• Semantics is the meaning associated with a syntactically correct string

of symbols
• English:

• Can have many meanings (ambiguous), e.g.
• “Flying planes can be dangerous”
• Other examples?

• Programming languages:

• Must be unambiguous
• Can only have one meaning
• Actual behavior is not always the intended behavior!

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Python3
• Programming language used in this course
• Great introductory language

• Better human readability and user friendly syntax than other PLs

• For this class, we need Python 3.10
• Checking version of Python on machine

• Type python3 --version in Terminal
• (VS Code Terminal for Windows)

• Preinstalled on all lab machines

• Installing Python3 on your machine: see setup guide on webpage

Interacting with Python
• You can run Python code in two ways:

• As a script

• Save code in a file, run from Terminal
• Interactively (from Terminal)

• Interactive session

Python: Program as a Script
• A program is a sequence of definitions and commands

• Definitions are evaluated

• Commands are executed and instruct the interpreter to do something

• Type instructions in a file that is read and evaluated sequentially

• e.g., last lecture we wrote helloworld.py in a file and then
executed it from the Terminal with
python3 helloworld.py

• Standard method: good for longer pieces of code or programs

• We will use this method in our labs

• Called "running the Python program as a script”

Python: Interactive
• Running Python interactively is great for introductory programming

• Launch the Python interpreter by typing python3 in the Terminal

• Opens up Interactive Python

• Almost like a "calculator" for Python commands

• Takes a Python expression as input and spits out the results of
the expression as output

• Great for trying out short pieces of code

user@computer cs134 % python3
Python 3.10.8 (main, Oct 13 2022, 10:17:43) [Clang 14.0.0
(clang-1400.0.29.102)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> print("Hello World")
Hello World
>>>

Python Primitive Types
• Every data value has a data type. For example:

• 10 is an integer (type: int)
• 3.145 is a decimal number (type: float)
• ‘Williams’ or “Williams” is a sequence of characters (type: string)

Knowing the type of a value allows us to choose
the right operator for expressions.

Python Primitive Types
• Every data value has a data type. For example:

• 10 is an integer (type: int)
• 3.145 is a decimal number (type: float)
• ‘Williams’ or “Williams” is a sequence of characters (type: string)
• 0 (False) and 1 (True) (type: boolean or bool)

• Represent answers to decision questions (yes/no)
• Empty value (type: None)

• We will revisit booleans and None types soon!

Knowing the type of a value allows us to choose
the right operator for expressions.

Examples

Python Operators
• Arithmetic operators:

• + (addition), - (subtraction), * (multiplication)
• / (floating point division, returns a value with a decimal point)
• // (integer division, returns an integer)
• % (modulo, or remainder)
• ** (power, or exponent)

• Assignment operator:

• = (“is assigned or gets”, not “equals”)
• Used to “assign” values to variables

• Note. Not to be confused with mathematical equality, which is
written as == in programming languages

Variables & Assignment

var

Variables and Assignments
• A variable names a value that we want to use later in a program

• If we define num = 17 then the value 17 essentially gets
stored in a slot in memory with the label num

• We are assigning num (a variable) the value 17

>>> num = 17

num

17

Variables and Assignments

Math vs Programming. An assignment: expression on the right
evaluated first and the value is stored in the variable name on the left

• A variable names a value that we want to use later in a program
• If we define num = 17 then the value 17 essentially gets

stored in a slot in memory with the label num
• We are assigning num (a variable) the value 17

• Once defined, we can reuse variable names again, and later
assignments can change the value in a variable box

• num = num - 5
• What is stored in num after this evaluates?

num
17

Variables and Assignments
• A variable names a value that we want to use later in a program

• If we define num = 17 then the value 17 essentially gets
stored in a slot in memory with the label num

• We are assigning num (a variable) the value 17
• Once defined, we can reuse variable names again, and later

assignments can change the value in a variable box
• num = num - 5
• What is stored in num after this evaluates?
• var = <expression> (result of expression gets stored in the

variable box var)
• Question. Why would we want to name values or expressions?

num
17 12

num
17

 pi = 3.1415926 # useful to name
 radius = 2.2
 area = pi * (radius**2)
 # suppose now we want to change radius
 radius = 2.2 + 1
 area = pi * (radius**2) # new area

Abstracting Expressions
• Why give names to data values or the results of expressions?

• To reuse names instead of values
• Easier to change code later

• For example:

Python Built-in Functions

Built-In Functions
• Python comes with a ton of built-in capabilities in the form of

functions
• We will discuss the following built-in functions today
• input(), print()

• int(), float(), str()

• Will formally discuss functions on Friday

Built-in functions: input()
• input() displays its single argument as a prompt on the screen and

waits for the user to input text, followed by Enter/Return
• Important: interprets the entered value as a string

>>> input('Enter your name: ')
Enter your name: Charlie Brown
'Charlie Brown'
>>> age = input('Enter your age: ')
Enter your age: 8
>>> age
'8'

Prompts in Maroon. User input in blue.
Inputted values are by default a string

Built-in functions: print()
• print() displays a character-based representation of its

argument(s) on the screen/Terminal.

>>> name = 'Peppermint Patty'
>>> print('Your name is ' + name)
Your name is Peppermint Patty
>>> age = input('Enter your age : ')
Enter your age: 7
>>> print('The age of ' + name + ' is ' + age)
The age of Peppermint Patty is 7

Need a space at end for string
concatenation

Built-in functions: int()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, int() returns the corresponding integer
• On any other string it raises a ValueError
• When given a float, int() returns the integer that results after truncating

it towards zero
• When given an integer, int() returns that same integer

>>> int('42')
42
>>> int('-5')
-5
>>> int('3.141')
ValueError

Built-in functions: float()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, and optionally including one decimal point, float() returns the
corresponding floating point number.

• On any other string it raises a ValueError
• When given an integer, float() converts it to a floating point number.
• When given a floating point number, float returns that number

>>> float('3.141')
3.141
>>> float('-273.15')
-273.15
>>> float('3.1.4')
ValueError

Built-in functions: str()
• Converts a given type to a string and returns it
• Returns a syntax error when given invalid input

>>> str(3.141)
'3.141'
>>> str(None)
'None'
>>> str(134)
'134'
>>> str($)
SyntaxError: invalid syntax

[Aside] Comments and Indenting
• Anything after # in Python is a comment

• Ignored by the interpreter
• Meant for humans reading the code
• Useful for readability for large pieces of code

• Python is sensitive to indentation
• Signify start of new "code block"
• We will see how to use indents more in the coming lecture

Practice in Interactive Python

Examples: Interactive Python

The end!

CS134:
Lab 01

Today’s Plan
Tools & resources for doing CS Labs!

After this lesson, you should be able to:
1. Explain the difference between VS Code, Terminal,

and python
2. Navigate your file structure with Terminal
3. Submit your lab assignments to be graded

Lab Deadlines
• Depend on your lab session day!

• Mondays —> Wednesday @10p
• Tuesdays —> Thursday @10p

Lab Instructions on Course Website!

• https://bit.ly/cs134f24

https://bit.ly/cs134f24

What do these 4 applications have in common?

What do these 4 applications have in common?

VS Code
Visual Studio Code

Similar…

Terminal

Terminal vs. File Explorer
• Terminal is a text-based view of your directory structure

• Like File or Explorer / Windows Explorer, but in text

Python
• Written into a script and then interpreted by Python

• python3 hello.py

• Interactive mode

• python3
• >>> print(“hello!”)

• Terminal & Python are two separate apps!

Terminal Keyboard Shortcuts
• Type a letter or two, then hit —> Tab Complete!

• —> Cycles through all previous Terminal commands!

Useful Keyboard Shortcuts

Useful Terminal/Unix Commands
• pwd - print working directory
• mkdir <dir name> - make new directory (or folder)
• cd <dir name> - change directory (like moving into a folder)
• Special directory names in Unix

 . single dot, current directory

 .. two dots, parent directory

 ~ tilde, home directory
• cd .. - takes you to the parent directory
• cd - takes you “home”
• ls - shows contents of current directory

git

Working on Labs
Repository or “repo”

Working on Labs

Repository or “repo”

Why git?!
• Version history!
• Access files from anywhere!
• Great for collaboration!
• Great for maintaining large code bases!

git:: Get the starter code first
• Copying files —> “I need to get a copy of the lab files my instructor

made.”

git clone https://URL-here.git

git:: 3 Steps: git add
• Staging files —> “I edited this file, I want to include it in the next

snapshot of my code .”

git add myfilename.py

git:: 3 Steps: git commit -m
• Committing files —> “Take a snapshot of my code that I’ve added so

far and assign it a version number.”

git commit -m “Message here”

git:: 3 Steps: git push
• Pushing files —> “Send all my snapshots up to the server!”

git push

git:: Check the Website to See Your Edits

• https://evolene.cs.williams.edu

https://evolene.cs.williams.edu

git:: 3 Steps
• git clone: copy code from server to a new machine for the first

time. Only run this once for each assignment on each machine!
• git add <files>: add new or modified files to the next commit

(this basically allows you to choose which files you plan to commit)
• git commit -m “<message>”: create a local snapshot of the

added files (this does not copy anything back to the server!)
• git push: copy changes from your machine back to our server

• git pull: copy latest version of code from our server to your local
machine (this can only be done after you have run git clone on
this machine)

• git commit -am “<message>”: commits an already added file
(a shortcut)

Notes
• We use git commands in Terminal
• You need your CS account to log-in to evolene (the gitlab server with

the lab starter files)
• Always git add/commit/push before you leave lab!

• Lab instructions are on the course Website
• You'll submit your assignments through GradeScope.

Submitting Your Lab Assignment
Through Gradescope

Gradescope
• First, you'll need to go to evolene/gitlab and download your lab

assignment as a .zip file:

Select the downward
arrow Download button

Then select 'zip' as the
Download source code

option

Remember where you've downloaded the
lab01-main.zip file!

(This screenshot is for a different lab, but the buttons should be the same!)

Gradescope
• Use the Gradescope invitation email you receive to create an account

associated with CS134
• From the Gradescope Dashboard, select CS134

Fall 2024

CS134

Your Dashboard will look
something like this!

Gradescope
• Select the appropriate assignment (for this week, lab 1)

• You should navigate to your Lab .zip file, and upload it

CS134

CS134

Remember to press
'Upload!

The end!

