
CSCI 134 Practice Final Exam 1

This is a 2-hour closed-book examination. All work should be your own. Simple and concise solutions will
receive the best score.

Keep in mind the following tips:

● You do not need to do the problems in the order they are presented.
● For partial credit on problems, you may explain your strategy with words and pictures.
● If you are taking too long on a problem, move on and come back to it later.
● Your solutions should fit within the provided spaces.

You may use the back of any page as scratch paper. Good luck!

Please make sure to include your anonymous ID on every page of the exam.

Name: _____________________________________________________________________________________

Anonymous ID: _____________

This exam has 5 questions and 13 total pages. The point breakdown is below.

Question Points Score

Question 1 20

Question 2 5

Question 3 5

Question 4 10

Question 5 20

TOTAL 60

Please sign the honor code statement below.

I have neither given nor received unauthorized aid on this exam.

Signed: _________________________________________________________________

1



Question 1: Short Answer (20 points)

Part A. (4 points) Circle all incorrect statements regarding dictionaries.

a. Dictionaries are mutable collections of key-value pairs.

b. Values of a dictionary must be unique.

c. Lists can be used as dictionary keys.

d. Keys of a dictionary must be unique.

Part B. (4 points) Consider the following code:

class Course:

def __init__(self, name, requirements):
self._name = name
self._requirements = requirements

def prereq(self, other):
"""Returns whether `other` is a requirement for this course."""
return other in self._requirements

def __str__(self):
"""String representation of object"""
return self._name

def sort_courses(course_list):
"""Sort the given courses based on prereq using selection sort"""
for i in range(len(course_list)):

for j in range(i+1, len(course_list)):
if course_list[i].prereq(course_list[j]):

course_list[i], course_list[j] = course_list[j], course_list[i]
return course_list

if __name__ == "__main__":
course1 = Course("CS134", set())
course2 = Course("CS136", {course1})
course3 = Course("CS256", {course1, course2})
course4 = Course("ML", {course3})
order = sort_courses([course3, course4, course2, course1])
for course in order:

print(course)

2



Anonymous ID: _________

What does the above code print to the screen?

Answer:

Part C. (2 points)
(i) If course_list has n elements, then what is the computational complexity of sort_courses(course_list)?

Express your answer using O-notation.
(ii) Is there a sorting algorithm that can improve the complexity (yes or no)?

Answer:
(i)

(ii)

Part D. (4 points) Suppose we wanted to create a subclass of Course (defined in Part B) called

IntroductoryCourse. An IntroductoryCourse has no requirements, but otherwise behaves exactly like a

regular Course. We want to initialize an IntroductoryCourse as follows:

course = IntroductoryCourse("CS134")

To do so, we create the following (incorrect) code:

class IntroductoryCourse:

def __init__(self, name):

self.__init__(name, set())

Fix the above code (there are two errors).

3



Part E. (3 points) Consider the following function:

def mystery(nums):

if len(nums) == 0:

return 0

elif len(nums) == 1:

return nums[0]

else:

return nums[0] * nums[-1] + mystery(nums[1:-1])

What is returned by the call mystery([1,2,3,4,5])?

Answer:

Part F. (3 points) Consider the following turtle graphics code:

def graphics_mystery(length, shrink_factor, angle, min_length):

if length > min_length:

fd(length)

lt(angle)

graphics_mystery(length*shrink_factor, shrink_factor, angle, min_length)

Circle which one of the following graphics_mystery(200, 0.93, 95, 10) outputs.

A) B) C)

4



Anonymous ID: _________

Question 2: Matching (5 points)

Consider a sorted list of n numbers which is the input to these algorithms:

A. Algorithm A adds 1 to each item in the list.
B. Algorithm B updates the first item of the list to be zero.
C. Algorithm C compares each number in the list to every other number in the list (using a nested for loop) to

determine if the list contains any duplicates.
D. Algorithm D performs binary search on the list.

Fill in the blanks with the letters A through E such that every statement is correct and you don’t use the same
expression twice.

Algorithm _______________________________ is a algorithm.𝑂(1)

Algorithm _______________________________ is a algorithm.𝑂(log 𝑛)

Algorithm _______________________________ is a algorithm.𝑂(𝑛)

Algorithm _______________________________ is a algorithm.𝑂(𝑛2)

5



Question 3: United Nations (5 points)

Create a function called countries_by_first_letter that takes as its only argument a list of strings, each of

which is the name of a country. It should return a dictionary that maps each letter of the alphabet to a list consisting
of the countries that start with that letter. If there are no countries that start with a particular letter, then that letter
should not appear as a key in the returned dictionary.

def countries_by_first_letter(countries):
"""Creates a dictionary that maps letters to the countries that begin
with that letter.

>>> countries_by_first_letter(['nepal', 'peru', 'norway', 'uganda', 'uruguay'])
{'n': ['nepal', 'norway'], 'p': ['peru'], 'u': ['uganda', 'uruguay']}

"""

6



Anonymous ID: _________

Question 4: The Life-Changing Magic of Tidying Up, Revisited (10 points)

Part A. (4 points) Palindromes still spark joy, but recursion is suddenly very trendy. Complete the RECURSIVE
function is_palindrome that takes a string word as its argument, and returns a boolean that indicates whether

word is a palindrome. Recall: a palindrome is a word that is spelled the same forward and backward – in each
recursive step you should consider shortening the word by excluding the first and last letter of the current word.

def is_palindrome(word):
"""Determines if a word is a palindrome.

>>> is_palindrome("kayak")
True
>>> is_palindrome("citric")
False
>>> is_palindrome("")
True
"""

7



Part B. (6 points) Double letters still don’t spark joy. Write a RECURSIVE function that counts the number of
double letters in the string word. Recall: a double letter is when a letter appears in a string twice in a row. For

instance, "bookkeeper" has three double letters ("oo", "kk", "ee"), whereas "cuddlepoo" has two double

letters ("dd", "oo"). In case you’re curious, the word wheeeeee has five double letters, since there are five pairs

of adjacent e’s in the word.

def num_double_letters(word):
"""Counts the number of double letters in a word.

>>> num_double_letters("bookkeeper")
3
>>> num_double_letters("cuddlepoo")
2
>>> num_double_letters("wheeeeee")
5
"""

8



Anonymous ID: _________

Question 5: May Madness! (20 points)

Mark was runner-up in a charity tournament bracket in March, and now thinks of himself as a jock. Let’s indulge his
delusions. For this question, implement a basketball tournament using Object Oriented Programming.

Your ultimate goal is to create Python classes that allow us to stage a basketball tournament. For instance, we
would like to be able to run the following Python code:

uconn = Team("uconn", 0.84)
kansas = Team("kansas", 0.86)
florida = Team("florida", 0.81)
amherst = Team("amherst", 0.32)
tourney = Tournament([uconn, kansas, florida, amherst], 50)
tourney.run()

and obtain output like the following:

uconn vs kansas
...uconn wins!
florida vs amherst
...florida wins!
uconn vs florida
...uconn wins!

To do so, you’ll need to implement three Python classes: Team, Match, and Tournament.

It will likely be helpful to know the following things about basketball:

● A Match consists of k “possessions”, and each team gets the same number of possessions.

● During each possession, the team either scores 2 points or 0 points.
● The probability that they score 2 points is determined by the team’s success_rate, a number between 0

and 1 as shown in the creation of the Team objects above

● If one team has more points than the other after k possessions, then they are the winner. Else, there is a tie.

In the case of a tie, the game goes into overtime, and we’ll assume that the team with the higher
success_rate always wins when the game goes to overtime.

9



Part A. (6 points) Start by filling in the missing code (in the boxes below) in the Team class. Make sure you:

● Complete the __init__method, which initializes the _name and _success_rate attributes.

● Complete the get_namemethod.

● Complete the possessionmethod.

class Team:

def __init__(self, name, success_rate):
"""Initialize attributes.
name: a string representing the team’s name.
success_rate: a float between 0 and 1 indicating the percentage of
possessions during which the team scores a basket.
"""

def get_success_rate(self):

"""Returns the team’s success rate."""

return self._success_rate

def get_name(self):

"""Returns the team’s name."""

def possession(self):

"""Draws a random float between 0 and 1. If that number is less

than self._success_rate, then we return the integer 2 (since we

scored a basket). Otherwise, we return the integer 0 (since we

didn’t score a basket).

"""

from random import random

rand_float = random() # chooses a random float between 0 and 1

10



Anonymous ID: _________

Part B: (6 points) Next, implement the Match class.

class Match:

def __init__(self, team1, team2):
self._team1 = team1
self._team2 = team2

def play(self, k):

"""Plays a basketball match and returns the winning Team.

Each team gets k possessions, where k is an int. For each possession,

you should call the .possession method of the team, and then add the

return value to the team's overall score.

If one of the two teams has a greater score after k possessions,

then return that team (the return value of this method should be

an instance of the Team class).

If the two teams are tied after all possessions are completed,

then we enter overtime. In overtime, the team with the higher success rate

is declared the winner. You can assume two teams never have the same success

rate (as before, the return value of this method should be

an instance of the Team class)

"""

11



Part C: (8 points) Finally, implement the Tournament class.

class Tournament:

def __init__(self, teams, num_possessions):

"""teams is a list of instances of the Team class.

You may assume that teams has at least one element.

"""

self._teams = teams

self._k = num_possessions

def run(self):

"""Simulates a basketball tournament.

As long as there are at least two teams in self._teams (a

list of Team instances), the tournament continues. In each

round of the tournament, the first two teams in self._teams

play one another. More specifically, the first two teams are

removed from self._teams and a Match is played between those

two teams. The winner of the match remains in the tournament,

and is therefore appended to the end of self._teams.

This process continues until only one team remains in self._teams.

This Team should be the return value of this method.

For each round, you should also print the teams in the

current Match and the winner of the Match.

"""

12



Anonymous ID: _________

Reference Sheet

You are free to use any definitions from homeworks, labs, or lectures. Here is a non-exhaustive summary of useful
functions, types, and methods.

range(start, stop, step):
range object generating integers starting at start (by default 0), going up to stop in steps step

randint(start, end): (from the randommodule)

returns an integer i such that start <= i <= end (inclusive of both start and end)

list class:

L.append(object) -> None

appends object to end of L

L.count(item) -> int

returns number of times item appears in

L.extend(iterable) -> None

extends L by appending elements from the iterable
L.index(value) -> int

returns the first index of value (or error, if not found).
L.insert(index, object)

inserts object before index in L
L.remove(item) -> None

removes the first instance of item from L

L.sort() -> None -- Sorts list L

tuple class:

T.count(val) -> int

Returns number of occurrences of val.
T.index(val) -> int

Returns the first index of value.

dict class:

D.get(key, default=None) -> object
Returns the value for key if key is in the dictionary, else default.

D.keys() -> object
Returns a set-like object providing a view of D's keys

D.items() -> object
Returns an object providing a view of D's items as a list of (key, value) tuple pairs

13


