Data Structures with “Randomness’’:
Hashtables

Flashback to Data Structures...

Recall the Dictionary intertace

 \What are the Dictionary operations?

 \What concrete Dictionary implementations did we study?
 What are the tradeotfs between binary search trees and hashtables”
 How often do we need to do successor/range operations?

o Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected)

point lookup/update performance but no support for
range operations.

Hashtable Basics

« We say this array has m slots or buckets
e SUPPOSe we want to store n items, where n < m. What is ideal situation”
« If every element has a unique, designated location, get O(1) operations:
e Insert a new item — update slot
e Look up an item — check slot
e Delete an item — clear slot

« Unfortunately we usually have a universe of items U we may wish to store,
where | U| is much much bigger than m. Example universes?

o Punchline: even with n < m, we can't guarantee those n items their own
dedicated |locations because we don’'t know which particular n items from
our universe U that we will be storing...

Hash table

« But we still want O(1) operations! Plus, you've been told we achieve that!

. In reality, we settle for expected O(1) performance...

e |dea: use a hash function to map each item to a slot

 his a one-way function that maps the universe U of keys to slots in

our array A:

h:U- {0,1,...m-1}

« SO, we say an item with key k hashes to slot i(k), and that A(k) is the

item’s hash value

o Textbook gives example hash functions (and why some are bad)

e [extbook discusses universal hashing

* |nstead, we're going to focus on analyzi

the assumption that we have a uniform

Nng |

‘he data structure under

1adS

N function

Hash function: theory versus practice

We will assume hash function A is ideal :
e Foralli € U, k, assume Pr(h(i) = k) = 1/m

e Assume the hashes of all items are
iINndependent:

Pr(h(i) = k| h(iy) = ky, h(iy) = ks, ...) = 1/m

Dahlgaard et al. 2017

MurmurHash3 "Random"

Such As called uniform random hash functions T T — o do1e

Good hash functions do behave this way in
practice

Lots of theoretical work about weaker assumptions
on the hash functions

0.2 0.3 04 05 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Hash table

» Hash function A, array A
o ltemiis stored in Alh(7)]

° m:6

Beth
Chris

Hash table

» Hash function A, array A

o Item i is stored in Alh(i)]

Amir e
Beth /

Chris h(Amir) = 3

Hash table

» Hash function A, array A

o Item i is stored in Alh(i)]

Amir een | | feef]
Beth \

Chris h(Beth) = 0

Hash table

» Hash function A, array A

o Item i is stored in Alh(i)]

Amir g) f famefomef
Beth /

Chris h(Chris) = 4

Hashtable Basics

o We said that even with n < m, we can't guarantee those n items
their own dedicated locations because we don't know which
particular n items from our universe U that we will be storing...

e S0 we say a collision occurs when two unique items hash to
the same slot (h(x;) = h(x,), x; # X,)

 Practically, we need a way to manage collisions
* Recall any strategies from data structures?

* [heoretically, we need a way to analyze the impact of collisions on
our data structure performance

» Our collision strategy needs to maintain our expected O(1)
oerformance (luckily, several do!)

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked
ISt

Amir

Beth

oms (o]] e loe]

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked

ISt
Beth T T

T

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked

ISt
Beth T T T

Nir /

h(Nir) = 4

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked

N [o |

Beth T T T

Nir /

h(Nir) = 4

Managing Collisions via Chaining

o Store a doubly linked list at each array entry

When an item hashes to a slot, prepend it to the
iInked list

How can we insert? (See above...)

How can we lookup?

a

OW can we delete”?

(Harder) How much time do these operations

ke”?

Beth

Managing Collisions via Chaining

e Store a doubly linked list at each array entry Beth

 When an item hashes to a slot, prepend it to the 4

inked list LI I T [T 1

Insert(k):
Prepend k at the head of the list A[h(k)]

e Runtime?
« O(1) — exactly; not in expectation!
« Note, we assume k is not in hashtable

* |f don't want that assumption, do a lookup first!

Managing Collisions via Chaining

Chris
. | A
 Store a doubly linked list at each array entry Both m
* When an item hashes to a slot, prepend it to the 4 A 4

inked list LI I T [T 1

Delete(k):
Scan the list A[/h(k)], and delete the entry with key k

* Runtime?
« O(L), where L is the length of the chain in slot (k)
« What is L7

Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a
particular bin. Question: Expected number of balls in a particular bin b7

» Let X; denote indicator r.v. that item i hashes to bucket b

. Assuming uniform hashing, Pr(X; = 1) = —
m

n
CLetX = Z X; denote the number of items that hash to bucket b
i=1

n n n 1
By linearity of expectation, E[X]| = E[ZXi] = Z E[X;] = Z — =
i=1 i=1 i=1

Managing Collisions via Chaining

Chris
N A
 Store a doubly linked list at each array entry Both m
» When an item hashes to a slot, prepend it to the 4 A A

inked list LI I T [T 1

Delete(k):
Scan the list A[/h(k)], and delete the entry with key k

* Runtime?
« O(L), where L is the length of the chain in slot (k)
« What is L7

n
. ElL] = —. We’'ll also call this the hashtable’s load factor
m

Managing Collisions via Chaining

Chris
A
 Store a doubly linked list at each array entry Both m
» When an item hashes to a slot, prepend it to the 4 A A

inked list LI I T [T 1

Lookup(k):
Scan the list A[h(k)]; return the entry with key £ if an entry exists

 Runtime?
e (Surprisingly?) Lookup behavior is different in two cases!

e “Successful” lookup vs. “unsuccesstul”
o \Why"

Hashing and Chain Length

Worst-case lookup time in a hash table with chaining: number of balls in a

particular bin. Question: what's different about successful and unsuccessful
cases”

* Unsuccessful lookup: must scan through entire chain

n
, Costis O(L), and we showed that E|L] = —
m

e Successful lookup stops once we find the target element. Analysis is tricky
because we always insert at the front of the list!

e Expected cost to lookup item x when x Is In the hashtable Is
the expected number of items that collided with x after x
was inserted

Cost of Successful Lookup

o Assume that element x is equally likely to be any of table’s n elements

 Number of elements checked is 1 plus number of elements that appear
before x in list A[h(x)]

* Observation: all elements are placed at the front of the list, so this is
precisely the number of elements that collided with x and were inserted
after x was

e Let x; be the 1th element inserted into the list

. Let X;; be the indicator r.v. that equals 1 when h(x;) = h(xj)
. i.e., X;;is 1 when there is a collision between x; and x;, 0 otherwise

. Under uniform hashing assumption, E[X;;] = 1/m

Cost of Successful Lookup

—xpected number of collisions with x that occur after x is inserted”
e Let x; be the 1t element inserted into the list
« In other words, we insert xy, X,, ..., X, into A

. Let X;; be the indicator r.v. that equals 1 when h(x;) = h(xj)
» Note: X;; is 1 when there is a collision between x; and x;, O otherwise
. Under our uniform hashing assumption, E[X;;] = 1/m

e \WWith this, can we reason about the number of elements examined in a
successful search?

Cost of Successful Lookup

The expected number of elements examined in a successful search is:

17’1 n
E ;Z 1+) X,

i=1 j=i+1

Since x may be any of the n # of comparisons to find x; are 1 plus

the expected number of collisions
among all items inserted after x;

elements we insert, we average the
contribution of each of the n items

Cost of Successful Lookup

-3

J=i+1

1+ZE[]

1=

1

ngm—z) —1+%<

1

] (n2 n(n+1)> .
2

n—1

=14 —14m_m =01+
2

2m n

nm

n

m

_Z[1+],2+1] Zl+mn21

=

J=i+1

PIED)

1 zl>

nz—nz—n

(2

)

2

)

Hashtable Summary

We can get close to O(1) performance for insert, lookup, and delete

operations (O(1 4+ n/m) in expectation, where n/m can be controlled
by resizing)

* [here are other strategies for resolving collisions, but analyzing their
performance Is tricky

o Linear probing: h(k,i) = (h(k) + 1) mod m

» Quadratic probing: h(k, i) = (h(k) + c;i + C2i2) mod m
 Double hashing: h(k, 1) = h(k||i)

. Power-of-two-choices: stored at (k) or h,(k), uses “cuckooing”

Hashtables are a great data structure for many applications
 As |ong as you don't need to iterate or sort!

=xtra: lechnigue
Cuckoo Hashing

img: http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
imQ: https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

lechnigues to Resolve

Collisions

e Cuckoo Hashing

e Select 2 independent hash functions

e Akeycannow landin1of2p

e Resolve collisions by “pushing” others
out of our bin and placing them in the bin

assoclated with their other hash

dCES

® [he process may need to repeat

e \Vhat happens when we:
e put(X) where hash4(X) = 07
e pUt(Y) where hashy(Y) = 77

We must avoid
|
cycles! W

src: https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

Cuckoo Hashing

e For iIndependent hash functions and low load factor,
expected O(1)

oo runs like we have with linear probing
e No shifting "down the line” on inserts

e At most 2 checks per lookup

(Extra: Problem)
Membership Queries

Vlemory Hierarchy

* Problem 1: Sometimes (almost always”) we have
more data than fits in memory

e Solution: Store a subset of our data in a cache

e \When we need something
that isn't iIn cache, we kick
out the least valuable things
to make room for the thing
we need

Vlemory Hierarchy

e Problem 2: Not all levels in our cache have the
same cost

Vlemory Hierarchy

e Problem 2: Not all levels in our cache have the
same cost

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

Vlemory Hierarchy

e Problem 3: Not all levels in our cache have the
same speed

Vlemory Hierarchy

e Result: we have a lot of slow, cheap storage, less
RAM, and very little CPU cache.

e \\Ne will focus on the interaction between RAM and
disk

P Fast,
&4 expensive,

) S
. SCarce

. Slow,
cheap,
s‘plentiful

Scenario: Photo Storage

Suppose:
 We have a small RAM cache that holds 2 photos
* Our cache is initially empty

e We read trom disk into cache, and evict the least
recently used photo when we need space

Vlemory Hierarchy

Small, fast

Big, slow

Vlemory Hierarchy

get(cat)

Small, fast

Vlemory Hierarchy

get(cat)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

get (dog) Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

get (dog) Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

get(cat)

Vlemory Hierarchy

Small, fast

get(cat)

Vlemory Hierarchy

* Problem: We paid an expensive cost just to find out
the thing we were looking for didn'’t exist!!

¢ |[dea: Cache a set of all the keys (names of all
ohotos on disk)

1. Check the names set first *before* checking disk

2. Don't go to disk if we know the thing isn't there

Membership Queries

e How to Implement our name set”
o|f we want to look things up quickly, use a hash set

e |f we want to avoid collisions:

e Make It big
e Use a large hash so to unigquely fingerprint each
file (P(collision) == small)

e New problem: keys can be long, fingerprints are
large. Now our set takes up a large portion of our
cache

Membership Queries

* Insight: we don't need to be perfect.

o [f we go to disk an extra time, no worse off
e False positives are not ideal, but they are OK

o [f we don't go to disk when something exists, BAD (or sick)
® False negatives are correctness bugs, not OK

e \We will build a structure that does approximate
membership queries and is more efficient than a set.

Bloom Filter

o Answers with “possibly in set” or “definitely not in set”
* \\e save space by not explicitly storing hashes or keys

® How It WOrks:
e Create a bit array of m bits
e Select k hash functions
e Hash each element k times and set all k bits
e An element is missing if any of its k bits Is unset
e An element may be present if all of its k bits are set

Bloom rilters

Insert(key):

for hashFunction; in hashFuncions; x:
bitmap[hashFunction;(key) % m] = 1

Query(key):

for hashFunction; in hashFuncions;j_k:

1f (bitmap[hashFunctioni(key) % m] != 1):

return “not in set”
return “maybe 1n set”

Bloom rilters

e Deleting keys?

e A key maps to k bits, and although setting any one of
those k bits to zero would remove that key from the set, it
will also remove every key that maps to one of those Dbits.

e Deleting would introduce false negatives!

e Resizing Bitmap?
e No way to grow array using just the bit values
o Although keys are not stored, they are often available
 \When the false positive rate gets too high (overloaded,
too many “deletes” still in bitmap), read keys from slower
media and resize+rehash

Related DS: Quotient Filters

e A nifty iIdea with an even nifty-er paper name (Don't

Thrash:
e Uses

ow to Cache your

ash in Flash)

inear probing to support efficient deletes and
merges

“Write-optimized” data structure (my research area)
Based on an end-of-chapter problem in an

undergraduate data structures textbook
o Jakeaway: You can publish a paper with the skills
you already have!

Acknowledgments

e Some of the material in these slides are taken from

* Shikha Singh

« CLRS

