Randomized Algorithm ||
Randomized QuickSort

Randomized Quicksort

e Recall deterministic Quicksort

. Depending on the choice pivot, could be O(n?)
 What if we pick the pivot uniformly at random?

 We saw in randomized selection that this leads to good pivots half of the time

Quicksort(A):
f |A] < 3 : Sort(A) directly
“Ise: choose a pivot element p «— A

A, A, < Partition around p

Quicksort(A<p)
Quicksort(A>p)

Randomized Quicksort

Intuitively half the pivots will be good, half bad

We will analyze quick sort using another accounting trick (see the textbook for
example similar to selection’s approach of analyzing “phases’)

Total work done can be split into to types:
 Work done making recursive calls (this is a lower order term, it turns out)

 Work partitioning the elements

ow many recursive calls in the worst case”

* |magine worst pivot being chosen each time

« O(n)

Randomized Quicksort

We thus need to bound the work partitioning elements

Partitioning an array of size n around a pivot p takes exactly n — 1 comparisons

We won't look at partitions made in each recursive call, which depend on the
choice of random pivot

Idea: Instead, account for the total work done by the partition step by summing
up the total number of comparisons made

Two ways to count total comparisons:

 Look at the size of arrays across recursive calls and sum

 Look at all pairs of elements and count total # of times they are compared
(this Iis easier to do In this case)

Aside: Randomized Analysis

Often multiple ways to determine a randomized algorithm’s cost

We can split into phases, or count the cost directly. We can calculate
each probability, or use linearity of expectation

Intrinsically some “cleverness” involved in choosing the way that gets
yYOou a clean answer

We'll focus on problems where there’'s a clear path to finding the solution
(either it follows directly from the question, or we'll revisit problems
you've seen before). More complex problems abound if you look!

That said, here's a very clever way to calculate Quicksort's running time

Counting Total Comparisons

Just for analysis, let B denote the sorted version of input array
A, that is, Bli] is the ith smallest element in A

Define random variable X;; as the number of times Quicksort

compares B|i] and B| /]
Observation: le = or le- = 1, why?

« BJi], B|j] only compared when one of them is the current
pIvot; pivots are excluded from future recursive calls

n n
Let ' = 2 2 X;j be the total number of comparisons made
i=1 j=i+1

by randomized Quicksort

Expected Running Time

Goal: E[T] =E zn: Zn: X;| = zn: Zn: E[X,]

i=1 j=i+1 i=1 j=i+1

E[X;] = Pr[X; = 1]

When is le = 1? That is, when are B|i] and B[j] compared?

Consider a particular recursive call. Let rank of pivot p be r.

« Let's think about where B|i], B|] lie with respect to p

Expected Running Time

Goal: E[T]=E Z Z X | = Z Z E[X,]

i=1 j=i+1 i=1 j=i+1
ElX;] = PrlX;; = 1]
When is Xl-j = 1? That is, when are B|i] and B[j] compared?
Consider a particular recursive call. Let rank of pivot p be r.
« Case 1. One of themisthe pivot: r =10rr =7
« Case 2. Pivot is betweenthem: r > 1andr <jJ

« Case 3. Both less than the pivot: > 1,

« Case 4. Both greater than the pivot: r <1,]

Comparisons for Each Case

e« Casel.r=1o0rr=j
« Bli] and B|j] are compared once and one of them is excluded from all future calls
e« Case2.r>1andr<j

« BJli] and B|j] are both compared to the pivot but not to each other, after which
they are in different recursive calls: will never be compared again

e« Case3.r>1,jandCased.r<1,]

« Bli] and B|j] are not compared to each other, they are both in the same subarray

and may be compared Iin the future

- Takeaway: B|i], B[] are compared for the 1st time when one of them is chosen as
pivot from Bli], Bli + 1], ..., B| j] & never again

Expected Running Time

. Pr[X;; = 1] = Pr(one of them is picked as pivot from B[i], Bli + 1], ..., B[]

B A oy

. E[T1=i iE[ij]zzi Zn: -_l-1+1

i=1 j=i+1 i=1 j=it+1”

Expected Running Time

Bli] and B[] are compared iff one of them is the first pivot chosen from the
range Bli],Bli + 1], ..., B|/J]

DrlX.. = 1] =
= j—i+1
n n n n 1
E|T]| = ElX:] =2 _—
M= 2L BX1=22 25
=1 j=i+1 =1 j=i+1
| o 1 1 1 | = 1
—or fixed 7, inner sumis — 4+ — +— 4+ < Z— = O(log n)
4 n—i+1 fzzf

Thus, expected number of comparisons Is:
E|T] = O(nlogn)

Quick Sort Summary

* [as Vegas algorithms like Quicksort and Selection are always correct and

their running time guarantees hold in expectation

 We can actually prove that the number of comparisons made by Quicksort is

O(nlog n) with high probability

« W.H.P. means that the the probability that the running time ot quicksort is

more than a constant ¢ factor away from its expectation is very small

(polynomially small: less than 1/n¢ forc > 1)
 Whp bounds are called concentration bounds

 Whp: ideal guarantees possible for a randomized algorithm

Acknowledgments

e Some of the material in these slides are taken from
* Shikha Singh

« Kleinberg Tardos Slides by Kevin Wayne (https://
Wwww.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

