
NP Hardness Reductions

Overview So Far
• We have defined classes

• We have some notion of hardness and completeness

• We said a problem is -hard if then

• Alternate definition: every problem in poly-time reduces to it

• A problem is -complete if it is -hard and in

𝖯 and 𝖭𝖯

𝖭𝖯 𝖭𝖯

X 𝖭𝖯 ≡ X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯

X 𝖭𝖯 𝖭𝖯 𝖭𝖯 We will define these
reductions today

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯
Focus on decision

problems

Overview
• We have defined classes

• We have some notion of hardness and completeness

• We said a problem is -hard if then

• Alternate definition: every problem in poly-time reduces to it

• A problem is -complete if it is -hard and in

• (Cook-Levin). 3SAT/SAT is hard

• Today: Problem reductions!

• Strategy to prove a problem is NP hard: Reduce a known NP hard
problem to it

• Will do a bunch of reductions next few days

𝖯 and 𝖭𝖯

𝖭𝖯 𝖭𝖯

X 𝖭𝖯 ≡ X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯

X 𝖭𝖯 𝖭𝖯 𝖭𝖯

𝖭𝖯

Relative Hardness
• How do we compare the relative hardness of problems?

• Recurring idea in this class: reductions!

• Informally, we say a problem reduces to a problem , if can use an
algorithm for to solve

• E.g., Bipartite matching reduces to max flow

X Y
Y X

Intuitively, if problem reduces to problem ,  
then solving is no harder than solving

X Y
X Y

[Karp] Reductions
Definition. Decision problem polynomial-time (Karp) reduces to
decision problem if given any instance of , we can construct an
instance of in polynomial time s.t if and only if . 

Notation.

• Solving is no harder than solving : if we have an algorithm for
, we can use it + a polynomial-time reduction to solve

X
Y x X

y Y x ∈ X y ∈ Y

X ≤p Y
X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions Quiz
Say . Which of the following can we infer?

• If can be solved in polynomial time, then so can .

• can be solved in poly time iff can be solved in poly time.

• If cannot be solved in polynomial time, then neither can .

• If cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y

X Y

X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions Quiz
Say . Which of the following can we infer?

• If can be solved in polynomial time, then so can .

• can be solved in poly time iff can be solved in poly time.

• If cannot be solved in polynomial time, then neither can .

• If cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y

X Y

X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Digging Deeper
• Graph 2-Color reduces to Graph 3-color

• We'll see this soon

• Graph 2-Color can be solved in polynomial time

• How?

• Can decide if a graph is bipartite in time using BFS

• Graph 3-color (we’ll show) is NP hard and unlikely to have a
polynomial-time solution

O(n + m)

Intuitively, if problem reduces to problem ,  
then solving is no harder than solving

X Y
X Y

Use of Reductions: X ≤p Y
Design algorithms:

• If can be solved in polynomial time, we know can also be
solved in polynomial time

Establish intractability:

• If we know that is known to be impossible/hard to solve in
polynomial-time, then we can conclude the same about problem

Establish Equivalence:

• If and then can be solved in poly-time iff can
be solved in poly time and we use the notation

Y X

X
Y

X ≤p Y Y ≤p X X Y
X ≡p Y

NP hard: Operational Definition
• New definition of NP hard using reductions.

• A problem is NP hard, if for any problem ,

• Recall we said is NP hard if .

• Lets show that both definitions are equivalent

• every problem in NP reduces to in poly-time, and if ,
then

• Suppose , then : which means every problem
in reduces to

Y X ∈ 𝖭𝖯 X ≤p Y

Y Y ∈ 𝖯, then 𝖯 = 𝖭𝖯

(⇒) Y Y ∈ 𝖯
𝖯 = 𝖭𝖯

(⇐) Y ∈ 𝖯 𝖯 = 𝖭𝖯
𝖭𝖯(= 𝖯) Y

Solving X is no harder
than solving Y

Proving NP Hardness
• To prove problem is -hard

• Difficult to prove every problem in reduces to

• Instead, we use a known-NP-hard problem

• We know every problem in ,

• Notice that is transitive

• Thus, enough to prove

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Known NP Hard Problems?
• For now: 3SAT and SAT (Cook-Levin Theorem)

• We will prove a whole repertoire of NP hard and NP complete
problems by using reductions

• Before reducing 3SAT to other problems to prove them NP hard, let us
practice some easier reductions first

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

VERTEX-COVER IND-SET≡p

IND-SET

Given a graph , an independent set is a subset of vertices
 such that no two of them are adjacent, that is, for any ,

• What is the decision version of the IND-SET problem?

• IND-SET decision Problem. Given a graph and an integer
, does have an independent set of size at least ?

G = (V, E)
S ⊆ V x, y ∈ S
(x, y) ∉ E

G = (V, E)
k G k

independent set of size 6

Vertex-Cover

Given a graph , a vertex cover is a subset of vertices
such that for every edge , either or .

• What is the decision version of the VERTEX_COVER problem?

• VERTEX-COVER decision Problem. Given a graph and an

integer , does have a vertex cover of size at most ?

G = (V, E) T ⊆ V
e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G k

vertex cover of size 4

independent set of size 6

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set, can we use it
to solve vertex cover?

• Claim. is an independent set of size iff is a vertex cover of
size .

• Proof. () Consider an edge

• is independent: both cannot be in

• At least one of

• covers

•

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e

∎

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set, can we use it
to solve vertex cover?

• Claim. is an independent set of size iff is a vertex cover of
size .

• Proof. () Consider an edge

• is a vertex cover: at least one of must be in

• Both cannot be in

• Thus, is an independent set.

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v V − S

u, v S

S ∎

Vertex Cover IND Set≡p
• VERTEX-COVER IND-SET

• Reduction. Let .

• If has a vertex cover of size at most then has an
independent set of size at least

• If has an independent set of size at least then has a
vertex cover of size at most

• IND-SET VERTEX-COVER

• Same reduction works: ,

• VERTEX-COVER IND-SET

≤p

G′￼= G, k′￼= n − k

(⇒) G k G′￼

k′￼

(⇐) G′￼ k′￼ G
k

≤p

G′￼= G k′￼= n − k

≡p

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

