
NP Hardness Reductions



Overview So Far
• We have defined classes  


• We have some notion of  hardness and  completeness


• We said a problem  is -hard  if  then  


• Alternate definition: every problem in  poly-time reduces to it


• A problem  is -complete if it is -hard and in 
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• We have some notion of  hardness and  completeness


• We said a problem  is -hard  if  then  


• Alternate definition: every problem in  poly-time reduces to it


• A problem  is -complete if it is -hard and in 


• (Cook-Levin). 3SAT/SAT is  hard


• Today: Problem reductions!


• Strategy to prove a problem is NP hard: Reduce a known NP hard 
problem to it 


• Will do a bunch of reductions next few days
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Relative Hardness
• How do we compare the relative hardness of problems?


• Recurring idea in this class: reductions!


• Informally, we say a problem  reduces to a problem , if can use an 
algorithm for  to solve 


• E.g., Bipartite matching reduces to max flow
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Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 
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[Karp] Reductions
Definition.  Decision problem  polynomial-time (Karp) reduces to 
decision problem  if given any instance  of , we can construct an 
instance  of  in polynomial time s.t   if and only if . 

Notation.    

• Solving  is no harder than solving :  if we have an algorithm for 
, we can use it + a polynomial-time reduction to solve 
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Reductions Quiz
Say . Which of the following can we infer?


• If  can be solved in polynomial time, then so can .


•  can be solved in poly time iff  can be solved in poly time.


• If  cannot be solved in polynomial time, then neither can .


• If  cannot be solved in polynomial time, then neither can .
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Digging Deeper
• Graph 2-Color reduces to Graph 3-color

• We'll see this soon 


• Graph 2-Color can be solved in polynomial time


• How?


• Can decide if a graph is bipartite in  time using BFS


• Graph 3-color (we’ll show) is NP hard and unlikely to have a 
polynomial-time solution

O(n + m)

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 
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Use of Reductions:  X ≤p Y
Design algorithms: 

• If  can be solved in polynomial time, we know  can also be 
solved in polynomial time


Establish intractability: 

• If we know that  is known to be impossible/hard to solve in 
polynomial-time, then we can conclude the same about problem 


Establish Equivalence: 

• If  and  then  can be solved in poly-time iff  can 
be solved in poly time and we use the notation 
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NP hard:  Operational Definition
• New definition of NP hard using reductions.  


• A problem  is NP hard, if for any problem ,  


• Recall we said  is NP hard if .


• Lets show that both definitions are equivalent


•  every problem in NP reduces to  in poly-time, and if , 
then 


•  Suppose , then : which means every problem 
in  reduces to 
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Proving NP Hardness
• To prove problem  is -hard


• Difficult to prove every problem in  reduces to 


• Instead, we use a known-NP-hard problem 


• We know every problem  in , 


• Notice that  is transitive 


• Thus, enough to prove 
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To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 
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Known NP Hard Problems?
• For now:   3SAT and SAT  (Cook-Levin Theorem)


• We will prove a whole repertoire of NP hard and NP complete 
problems by using reductions


• Before reducing 3SAT to other problems to prove them NP hard, let us 
practice some easier reductions first

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 
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VERTEX-COVER    IND-SET≡p



IND-SET

Given a graph , an independent set is a subset of vertices 
 such that no two of them are adjacent, that is, for any ,  



• What is the decision version of the IND-SET problem?


• IND-SET decision Problem.  Given a graph  and an integer 
, does  have an independent set of size at least ?

G = (V, E)
S ⊆ V x, y ∈ S
(x, y) ∉ E

G = (V, E)
k G k

independent set of size 6



Vertex-Cover

Given a graph , a vertex cover is a subset of vertices  
such that for every edge , either  or .


• What is the decision version of the VERTEX_COVER problem?

• VERTEX-COVER decision Problem.  Given a graph  and an 

integer , does  have a vertex cover of size at most ?

G = (V, E) T ⊆ V
e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G k

vertex cover of size 4

independent set of size 6



Our First Reduction
• VERTEX-COVER    IND-SET


• Suppose we know how to solve independent set, can we use it 
to solve vertex cover?


• Claim.    is an independent set of size  iff  is a vertex cover of 
size . 


• Proof. ( ) Consider an edge  


•  is independent:  both cannot be in 


• At least one of  


•  covers   


•

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e

∎



Our First Reduction
• VERTEX-COVER    IND-SET


• Suppose we know how to solve independent set, can we use it 
to solve vertex cover?


• Claim.    is an independent set of size  iff  is a vertex cover of 
size . 


• Proof. ( ) Consider an edge  


•  is a vertex cover: at least one of  must be in 


• Both  cannot be in  


• Thus,  is an independent set.  

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v V − S

u, v S

S ∎



Vertex Cover  IND Set≡p
• VERTEX-COVER    IND-SET


• Reduction.  Let  . 


•  If  has a vertex cover of size at most  then  has an 
independent set of size at least  


•  If  has an independent set of size at least  then  has a 
vertex cover of size at most 


• IND-SET    VERTEX-COVER 


• Same reduction works: , 


• VERTEX-COVER    IND-SET

≤p

G′￼= G, k′￼= n − k

( ⇒ ) G k G′￼

k′￼

( ⇐ ) G′￼ k′￼ G
k

≤p

G′￼= G k′￼= n − k

≡p
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