
Flow Networks:
Max Flow



Ford-Fulkerson Algorithm
• Start with  for each edge 


• Find a simple  path  in the residual network 


• Augment flow along path  by bottleneck capacity 


• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)                          
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_____

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.
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Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacitynetwork G and flow f

value of flow

4

10

8 

8

8

9s

2
2

 10  6

2 t

residual network Gf



Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacity

4

10

8 

8

8

9s

2
2

 10  6

2 t

network G and flow f

value of flow

P in residual network Gf



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Analysis: Ford-Fulkerson



• Feasibility and value of flow:


• Show that each time we update the flow, we are routing a 
feasible  flow through the network


• And that value of this flow increases each time by that amount


• Optimality:


• Final value of flow is the maximum possible 


• Running time:


• How long does it take for the algorithm to terminate?


• Space:


• How much total space are we using?

s-t

Analysis Outline (Things to Prove)



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity . 
Let  , then  is a feasible flow.


• Proof. Note, we only need to verify constraints on the edges of 
, since  for other edges. Let 


• If  is a forward edge:   





• If  is a backward edge:  


 


• Conservation constraint hold on any node in :


• , therefore  for both cases

f G P
Gf b

f′￼← AUGMENT( f, P) f′￼

P f′￼= f e = (u, v) ∈ P
e f′￼(e) = f(e) + b

≤ f(e) + (c(e) − f(e)) = c(e)
e f′￼(e) = f(e) − b

≥ f(e) − f(e) = 0
u ∈ P

fin(u) = fout(u) f′￼in(u) = f′￼out(u)

Feasibility of Flow



Claim.  Let  be a feasible flow in  and let  be an augmenting 
path in  with bottleneck capacity . 
Let  , then .


• Proof. 


• First edge  must be out of  in 


• Observe that  is simple, so it never visits  again


•  must be a forward edge (  is a path from  to )


• Thus  increases by , increasing  by  


• Note.  Means the algorithm makes forward progress each time!

f G P
Gf b

f′￼← AUGMENT( f, P) v( f′￼) = v( f ) + b

e ∈ P s Gf

P s

e P s t

f(e) b v( f ) b ∎

Value of Flow:  Making Progress

We’ll use this later to analyze the running time



Optimality



Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -  cut 

then .


• We will show that the Ford-Fulkerson algorithm terminates in 
a flow that achieves optimality, that is,


• Ford-Fulkerson finds a flow , and there exists a cut 
 such that,   


• Proving this shows that it finds the maximum flow (and the 
min cut)


• This also proves the max-flow min-cut theorem!

f s t (S, T ) s t
v( f ) ≤ c(S, T )

f*
(S*, T*) v( f*) = c(S*, T*)



Ford-Fulkerson Optimality
Lemma. Let  be an  flow in  such that there is no augmenting 
path in the residual graph , then there exists a cut  such 
that .  


• Proof.


• Let ,   


• Is this an  cut?  


• Yes! ,  and 


• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf (S*, T*)

v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)



Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof.


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 


•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof. (Cont.) 


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof. (Cont.) 


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 


•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0 Otherwise, there would have been a 
backwards edge in the residual graph



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof. (Cont.) 

• Let ,   


• Thus, all edges leaving  are completely saturated and all 
edges entering  have zero flow


•  


Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

Performance Questions:


• Does the while loop terminate?  


• If it terminates, can we bound the number of iterations?


• What is the Big-O running time of the whole algorithm?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



Recall we proved that with each call to AUGMENT, we increase value 
of the  flow by 


• Assumption.  We assumed all capacities  are integers.


• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus .


• Let  be the maximum capacity among edges 

leaving the source .  


• It must be that 


• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

s-t b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ nC

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time



Ford-Fulkerson Performance

We know there are  iterations. How many operations per iteration?


• Cost to find an augmenting path in ?


• Cost to augment flow on path?


• Cost to update ?

O(nC)
Gf

Gf

FORD–FULKERSON(G)                          
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Claim.  Ford-Fulkerson can be implemented to run in time 
, where  and .


• Proof.  Time taken by each iteration:


• Finding an augmenting path in 


•  has at most  edges, using BFS/DFS takes 

 time


• Augmenting flow in  takes  time


• Given new flow, we can build new residual graph in  time


• Overall,  time per iteration 

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time



[Digging Deeper] Polynomial time?
Question: Does the Ford-Fulkerson algorithm run in time 
polynomial in the input size? 


• Running time is , where 


• What is the input size?


•  vertices,  edges,  capacities


•  represents the magnitude of the maximum capacity 
leaving the source node


• How many bits to represent ?


• 


• Let us look at an example

O(nmC) C = max
u

c(s → u)

n m m
C

C
log2 C



• Question.  Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input?


• Answer.  No. if max capacity is , the algorithm can take  
iterations.  Consider the following example.

C ≥ C

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C



[Digger Deeper] Pseudo-Polynomial
• Input graph has  nodes and  edges, each with 

capacity 


•  = , then  takes  bits to represent


• Input size:  bits


• Running time: 


• Exponential in the size of representing  


• Recall that such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude but not 
size of an input parameter.


• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log2 C)

C



Non-Integral Capacities?
Recall: our runtime analyst relied on integral capacities. What 
happens if they aren’t?

• If the capacities are rational, can just multiply to obtain a 

large integer 

• Increases running time, but Ford-Fulkerson analysis 

unchanged

• If capacities are irrational, Ford-Fulkerson can run infinitely!


• Improvement at each step can be arbitrarily small

• We can create bad instances where it doesn't 

terminate in finite steps



Applications of 
Network Flow:  
Solving Problems by  

Reduction to Network Flows



Max-Flow Min-Cut  Applications
• Data mining

• Bipartite matching

• Network reliability

• Image segmentation

• Baseball elimination

• Network connectivity

• Markov random fields

• Distributed computing

• Network intrusion detection

• Many, many, more.

liver and hepatic vascularization segmentation

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)



Reductions

• We will solve these problems by reducing them to a 
network flow problem


• We'll focus on the concept of problem reductions



Anatomy of Problem 
Reductions

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

At a high level, a problem  reduces to a problem  if 
an algorithm for  can be used to solve 

• Reduction.  Convert an arbitrary instance  of  to a 

special instance  of  such that there is a 1-1 
correspondence between them

X Y
Y X

x X
y Y



Anatomy of Problem 
Reductions

• Claim.   satisfies a property iff  satisfies a corresponding 
property


• Proving a reduction is correct: prove both directions

•  has a property (e.g. has matching of size    has a 

corresponding property (e.g. has a flow of value 

•  does not have a property (e.g. does not have matching of 

size    does not have a corresponding property 
(e.g. does not have a flow of value  


• Or equivalently (and this is often easier to prove):

•  has a property (e.g. has flow of value    has a 

corresponding property (e.g. has a matching of value 

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)



Remaining Plan
We will explore one application of network flow in detail today


• Matching in bipartite graphs


• Matchings are super practical with many applications


• We have already seen one, can you remember?


Next meeting:  another application reducible to network flow 
(baseball elimination)


• More practice with reductions


• (Reductions will come in handy on our next topic too!)



Bipartite Matching



Review: Matching in Graphs
Definition.  Given an undirected graph , a matching 

 of  is a subset of edges such that no two edges in  are 
incident on the same vertex.


• Said differently, a node appears in at most one edge in 

G = (V, E)
M ⊆ E G M

M



Review: Matching in Graphs
A perfect matching matches all nodes in 


• Max matching problem. Find a matching of maximum 
cardinality for a given graph


• That is, a matching with maximum number of edges


• Observation: If it exists, a perfect matching is maximum!

G



Review: Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two 
subsets  such that every edge  connects  and 




• Bipartite matching problem. Given a bipartite graph 
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'
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