Flow Networks:
Max Flow

Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

Fora-Fulkerson Example

network G and flow f

@ 0/10

residual network Gr

() 10

QO

0/2

O

flow

NS

0/4

0/9

capacity

@

0/6

O

7
o value of flow

l
0/10 @ 0

residual capacity

/

0

—

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 0 0O/6 =
Q\\ & 0 value of flow

l
@ 0/10 Q 0/9 Q 0/10 @ 0

P in residual network Gs

: O
AN

6 0

e N

O I~ ¢ W ()

Fora-Fulkerson Example

network G and flow f flow capacity

NS
0\0/4 ®
\Q/O/Z S, 0O/6 0/7
& e\ © value of flow
@/ O oo O—— @) ¢

residual network Gr

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 S 0O/6 =
%\\ ‘8 0 value of flow

l
@ 0/10 Q 0/9 Q 8/10 @ 8

P in residual network Gs

Fora-Fulkerson Example

network G and flow f

l

O 2/2
2O

o b

residual network Gr

&——O

capacity

v

Sl @

0
S, 0/6 -
S 0 value of flow

2/9)O— 10/10—)@ 8+2 =10

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q
N\ 2/9 S 0/6 <
\ ‘8 0 value of flow

l
@ 0/10 Q 2/9 Q 10/10 @ 10

P in residual network Gs

N

2 S 6 0

Fora-Fulkerson Example

network G and flow f

@

O 2/2
2O

SO

residual network Gr

)

capacity

v

‘ \value of flow

8/9)O 10/10 @ 10+6 =16

| Oc—nv—~0

Fora-Fulkerson Example

network G and flow f flow capacity

O -

Q ~
N 2/2 S 6/6
\ & 0 value of flow

l
@ 6/10 Q 8/9 Q 10/10 @ 16

fixes mistake from

P in residual network Gs second augmenting path

b >

Fora-Fulkerson Example

network G and flow f flow capacity

O 0/2 8, 6/6 S

O l \value of flow

@—8/10—)@ 8/9 Q 10/10 @ 18

residual network Gr 2
O 2 @
&
<3
2 (o4 6
O

Fora-Fulkerson Example

network G and flow f flow capacity

S I

Q
N 0/2 (< 6/6 -~
\ ‘8 0 value of flow

l
@ 8/10 Q 8/9 Q 10/10 @ 18

P in residual network Gs
’\Q \ \

(S —2>O0— ' —2>0—

Fora-Fulkerson Example

network G and flow f flow / capacity
3/4 >
Q 9
% 0/2 < 6/6 “7

O \ \value of flow

@—9/10—)@ 9/9)O 10/10 @ 19

residual network Gr 3

Ge—s—-0 9 O A1)

1 No s-t path left!

Fora-Fulkerson Example

network G and flow f

@

O 0/2
2O

Capacity of cut?

() O

residual network Gr

9/10

nodes reachable from s

flow

9/9

v

capacity

@

6/6

O

“
o value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Analysis: Ford-Fulkerson

Analysis Outline (Things to Prove)

e Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
e Optimality:

* Final value of flow is the maximum possible
 Running time:

 How long does it take for the algorithm to terminate”
e Space:

 How much total space are we using?

Feasibility of Flow

« Claim. Let fbe afeasible flow in G and let P be an
augmenting path in waith bottleneck capacity b.

Let " < AUGMENT(f, P), then f’is a feasible flow.

* Proof. Note, we only need to verity constraints on the edges of
P, since f" = ffor other edges. Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) = O
« Conservation constraint hold on any node in u € P:

e f..(u)=f,(u),therefore f; (u) =f (u)for both cases

Value of Flow: Making Progress

Claim. Let f be a feasible flow in G and let P be an augmenting
path in waith bottleneck capacity b.

Let ' < AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. Firstedge e € P must be out of s in G

« Observe that P is simple, so it never visits s again
« e must be a forward edge (P is a path from s to 7)
« Thus f(e) increases by b, increasing v(f) by b I

* Note. Means the algorithm makes forward progress each time!

WEe'll use this later to analyze the running time

Optimality

Ford-Fulkerson Optimality

« Recall: If fis any feasible s-f flow and (S, T') is any s-f cut
thenv(f) < c(S,T).

* We will show that the Ford-Fulkerson algorithm terminates in

a flow that achieves optimality, that is,

« Ford-Fulkerson finds a flow f*, and there exists a cut
(8%, T%) such that, v(f*) = c(S*, T™)

* Proving this shows that it finds the maximum flow (and the

min cut)

* This also proves the max-flow min-cut theorem!

Ford-Fulkerson Optimality

Lemma. Let f be an s-f flow in G such that there is no augmenting
path in the residual graph Gy, then there exists a cut (5, 7*) such

that v(f) = c(S§*, T%).
 Proof.

. Let§* = {v | visreachable from s in G¢}, T* = V — §*

e IS this an s-f cut?
e YeslseS,reT,. SUT=VandSNT=g

« Consideranedgee =u — vwithu € §*,v € T*, then what
can we say about f(e)?

Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
O w0
Q R
N 0/2 z 6/6 -
. \0\ & ‘0 value of flow
Capacity of cut? l
@ 9/10 Q 9/9 Q 10/10 @ 19
residual network Gs 3
| O
nodes reachable from s ©
> 7
2 6
O 7

Ge—+—-0 9 O A1)

1 No s-t path left!

Ford-Fulkerson Optimality

Lemma. Let f be a s- flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(8*, T™).

Proof.

Let % = {v | visreachable from sin G¢}, T* = V — §*
s this an s-f cut?

e sESteT SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?

» fle) = c(e)

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — vwithv € S*, w € T%, then what
can we say about f(e)?

Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
O w0
Q R
N 0/2 z 6/6 -
. \0\ & ‘0 value of flow
Capacity of cut? l
@ 9/10 Q 9/9 Q 10/10 @ 19
residual network Gs 3
| O
nodes reachable from s ©
> 7
2 6
O 7

Ge—+—-0 9 O A1)

1 No s-t path left!

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — v withv € §*,w € T™, then what
can we say about f(e)?

o f(e) — (0 Otherwise, there would have been a
backwards edge in the residual graph

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and all
edges entering S* have zero flow

V() = JoulS™) = Jin(S*) = Joud $*) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

Performance Questions:
e Does the while loop terminate”
e [fitterminates, can we bound the number of iterations?

 What is the Big-O running time of the whole algorithm?

Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase value
of the s-7 flow by b = bottleneck(Gy, P)

« Assumption. We assumed all capacities c(e) are integers.

* Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.

e It mustbe that v(f) < nC

« Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = O(nC) iterations.

Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

We know there are O(nC) iterations. How many operations per iteration?

. Cost to find an augmenting path in Gf?

e (Cost to augment flow on path?

. Cost to update Gf’?

Ford-Fulkerson Running Time

Claim. Ford-Fulkerson can be implemented to run in time

O(nmC), wherem = |E| > n—1and C = maxc(s = u).

Proof. Time taken by each iteration:

Finding an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

Augmenting flow in P takes O(n) time
Given new flow, we can build new residual graph in O(m) time

Overall, O(m) time per iteration B

[Digging Deeper] Polynomial time*?

Question: Does the Ford-Fulkerson algorithm run in time
polynomial in the input size”?

Running time is O(nmC), where C = max c(s — u)
u

 What is the input size?
e 1 vertices, m edges, m capacities

« (represents the magnitude of the maximum capacity
eaving the source node

« How many bits to represent C?
® 10g2 C

* Let us look at an example

[Digging Deeper] Polynomial time*?

* Question. Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input? < ~mnandlogC

« Answer. No. if max capacity is C, the algorithm can take > C
iterations. Consider the following example.

* §S—SVv—=w—>f
¢ (—p—p—>t each augmenting path
<«<—— sendsonly 1 unit of flow

¢ (s * (—>pP—W—>t (# augmenting paths = 2C)

/ \ ¢ s—W—Y—>f
% 1 >

* s—=V—w—t

* S—SW—V—>t

[Digger Deeper] Pseudo-Polynomial

. Input graph has n nodes and m = O(n?) edges, each with
capacity c,

C = max c(e), then c(e) takes O(log C) bits to represent
eek

« Inputsize: Q(nlogn + mlogn + mlog C) bits
. Running time: O(nmC) = O(nm?2'°%:¢)
« Exponential in the size of representing C

* Recall that such algorithms are called pseudo-polynomial

* |f the running time is polynomial in the magnitude but not
size of an input parameter.

 We saw this for knapsack as well!

Non-Integral Capacities?

Recall: our runtime analyst relied on integral capacities. What
happens if they aren't?”

e |f the capacities are rational, can just multiply to obtain a
arge integer

* [ncreases running time, but Ford-Fulkerson analysis
unchanged

* |f capacities are irrational, Ford-Fulkerson can run infinitely!
* Improvement at each step can be arbitrarily small

e \We can create bad instances where it doesn't
terminate in finite steps

Applications of

Network Flow:

Solving Problems by
Reduction to Network Flows

Max-Flow Min-Cut Applications

Data mining

Bipartite matching

Network reliability

mage segmentation

Baseball elimination

Network connectivity

 Markov random fields

* Distributed computing

* Network intrusion detection
Many, many, more.

liver and hepatic vascularization segmentation

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)

Reductions

 We will solve these problems by reducing them to a
network flow problem

 We'll focus on the concept of problem reductions

Anatomy of Problem
Reductions

At a high level, a problem X reduces to a problem Y if
an algorithm for Y can be used to solve X

« Reduction. Convert an arbitrary instance x of X to a
special instance y of Y such that there is a 1-1
correspondence between them

Positive instance

Instance of X Instance of Y

— R o dUCtiON

X Negative instance

Algorithm for Y

Algorithm for X

Anatomy of Problem
Reductions

Claim. Xx satisfies a property iff y satisfies a corresponding
property
Proving a reduction is correct: prove both directions

X has a property (e.g. has matching of size k) = y has a
corresponding property (e.g. has a flow of value k)

X does not have a property (e.g. does not have matching of
size k) = y does not have a corresponding property
(e.g. does not have a flow of value k)

Or equivalently (and this is often easier to prove):

« Y has a property (e.g. has flow of value k) = x has a
corresponding property (e.g. has a matching of value k)

Remaining Plan

We will explore one application of network flow in detail today
 Matching In bipartite graphs
* Matchings are super practical with many applications
* We have already seen one, can you remember?

Next meeting: another application reducible to network flow
(baseball elimination)

* More practice with reductions

e (Reductions will come in handy on our next topic too!)

Bipartite Matching

Review: Matching in Graphs

Definition. Given an undirected graph G = (V, E), a matching
M C E of G is a subset of edges such that no two edges in M are
iIncident on the same vertex.

« Said differently, a node appears in at most one edge in M

Review: Matching in Graphs

A perfect matching matches all nodes in G

 Max matching problem. Find a matching of maximum
cardinality for a given graph

e Thatis, a matching with maximum number of edges

* Observation: If it exists, a perfect matching is maximum!

Review: Bipartite Graphs

A graph is bipartite if its vertices can be partitioned into two
subsets X, Y such that every edge e = (i, v) connects u € X and
veyY

* Bipartite matching problem. Given a bipartite graph
G =(XUY,E)find amaximum matching.

Acknowledgments

e Some of the material in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

