
Flow Networks:
Max Flow

Ford-Fulkerson Algorithm
• Start with for each edge

• Find a simple path in the residual network

• Augment flow along path by bottleneck capacity

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)
__

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

value of flow
0 / 10

flow capacity

residual network Gf

s t

2 6

10

4

910

residual capacity

 10
 10 8

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

flow capacity

P in residual network Gf

2 6

4

910

 10

s t

 10

10

8

network G and flow f

value of flow

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacitynetwork G and flow f

value of flow

4

10

8

8

8

9s

2
2

 10 6

2 t

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacity

4

10

8

8

8

9s

2
2

 10 6

2 t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 8+2 = 10

0 / 10

flow capacitynetwork G and flow f

value of flow

4

8

2

2

10

 10

10 7s

 10 6

t

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

0 / 10

flow capacity

4

8

2

2

10

 10

10 7s

 10 6

t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10+6 = 16

6 / 10

flow capacitynetwork G and flow f

value of flow

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

6 / 10

flow capacity

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

fixes mistake from
second augmenting path

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacitynetwork G and flow f

value of flow

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacity

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Analysis: Ford-Fulkerson

• Feasibility and value of flow:

• Show that each time we update the flow, we are routing a
feasible flow through the network

• And that value of this flow increases each time by that amount

• Optimality:

• Final value of flow is the maximum possible

• Running time:

• How long does it take for the algorithm to terminate?

• Space:

• How much total space are we using?

s-t

Analysis Outline (Things to Prove)

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . 
Let , then is a feasible flow.

• Proof. Note, we only need to verify constraints on the edges of
, since for other edges. Let

• If is a forward edge:

• If is a backward edge:

• Conservation constraint hold on any node in :

• , therefore for both cases

f G P
Gf b

f′￼← AUGMENT(f, P) f′￼

P f′￼= f e = (u, v) ∈ P
e f′￼(e) = f(e) + b

≤ f(e) + (c(e) − f(e)) = c(e)
e f′￼(e) = f(e) − b

≥ f(e) − f(e) = 0
u ∈ P

fin(u) = fout(u) f′￼in(u) = f′￼out(u)

Feasibility of Flow

Claim. Let be a feasible flow in and let be an augmenting
path in with bottleneck capacity . 
Let , then .

• Proof.

• First edge must be out of in

• Observe that is simple, so it never visits again

• must be a forward edge (is a path from to)

• Thus increases by , increasing by

• Note. Means the algorithm makes forward progress each time!

f G P
Gf b

f′￼← AUGMENT(f, P) v(f′￼) = v(f) + b

e ∈ P s Gf

P s

e P s t

f(e) b v(f) b ∎

Value of Flow: Making Progress

We’ll use this later to analyze the running time

Optimality

Ford-Fulkerson Optimality
• Recall: If is any feasible - flow and is any - cut

then .

• We will show that the Ford-Fulkerson algorithm terminates in
a flow that achieves optimality, that is,

• Ford-Fulkerson finds a flow , and there exists a cut
 such that,

• Proving this shows that it finds the maximum flow (and the
min cut)

• This also proves the max-flow min-cut theorem!

f s t (S, T) s t
v(f) ≤ c(S, T)

f*
(S*, T*) v(f*) = c(S*, T*)

Ford-Fulkerson Optimality
Lemma. Let be an flow in such that there is no augmenting
path in the residual graph , then there exists a cut such
that .

• Proof.

• Let ,

• Is this an cut?

• Yes! , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf (S*, T*)

v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with , then what
can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0 Otherwise, there would have been a
backwards edge in the residual graph

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there exists a cut
 such that .

• Proof. (Cont.)

• Let ,

• Thus, all edges leaving are completely saturated and all
edges entering have zero flow

•

Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v(f) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

Performance Questions:

• Does the while loop terminate?

• If it terminates, can we bound the number of iterations?

• What is the Big-O running time of the whole algorithm?

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

Recall we proved that with each call to AUGMENT, we increase value
of the flow by

• Assumption. We assumed all capacities are integers.

• Integrality invariant. Throughout Ford–Fulkerson, every edge flow
 and corresponding residual capacity is an integer. Thus .

• Let be the maximum capacity among edges

leaving the source .

• It must be that

• Since, increases by in each iteration, it follows that FF
algorithm terminates in at most iterations.

s-t b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v(f) ≤ nC

v(f) b ≥ 1
v(f) = O(nC)

Ford-Fulkerson Running Time

Ford-Fulkerson Performance

We know there are iterations. How many operations per iteration?

• Cost to find an augmenting path in ?

• Cost to augment flow on path?

• Cost to update ?

O(nC)
Gf

Gf

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

• Claim. Ford-Fulkerson can be implemented to run in time
, where and .

• Proof. Time taken by each iteration:

• Finding an augmenting path in

• has at most edges, using BFS/DFS takes

 time

• Augmenting flow in takes time

• Given new flow, we can build new residual graph in time

• Overall, time per iteration

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time

[Digging Deeper] Polynomial time?
Question: Does the Ford-Fulkerson algorithm run in time
polynomial in the input size?

• Running time is , where

• What is the input size?

• vertices, edges, capacities

• represents the magnitude of the maximum capacity
leaving the source node

• How many bits to represent ?

•

• Let us look at an example

O(nmC) C = max
u

c(s → u)

n m m
C

C
log2 C

• Question. Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input?

• Answer. No. if max capacity is , the algorithm can take
iterations. Consider the following example.

C ≥ C

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C

[Digger Deeper] Pseudo-Polynomial
• Input graph has nodes and edges, each with

capacity

• = , then takes bits to represent

• Input size: bits

• Running time:

• Exponential in the size of representing

• Recall that such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude but not
size of an input parameter.

• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log2 C)

C

Non-Integral Capacities?
Recall: our runtime analyst relied on integral capacities. What
happens if they aren’t?

• If the capacities are rational, can just multiply to obtain a

large integer

• Increases running time, but Ford-Fulkerson analysis

unchanged

• If capacities are irrational, Ford-Fulkerson can run infinitely!

• Improvement at each step can be arbitrarily small

• We can create bad instances where it doesn't

terminate in finite steps

Applications of
Network Flow:  
Solving Problems by  

Reduction to Network Flows

Max-Flow Min-Cut Applications
• Data mining

• Bipartite matching

• Network reliability

• Image segmentation

• Baseball elimination

• Network connectivity

• Markov random fields

• Distributed computing

• Network intrusion detection

• Many, many, more.

liver and hepatic vascularization segmentation

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)

Reductions

• We will solve these problems by reducing them to a
network flow problem

• We'll focus on the concept of problem reductions

Anatomy of Problem
Reductions

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

At a high level, a problem reduces to a problem if
an algorithm for can be used to solve

• Reduction. Convert an arbitrary instance of to a

special instance of such that there is a 1-1
correspondence between them

X Y
Y X

x X
y Y

Anatomy of Problem
Reductions

• Claim. satisfies a property iff satisfies a corresponding
property

• Proving a reduction is correct: prove both directions

• has a property (e.g. has matching of size has a

corresponding property (e.g. has a flow of value

• does not have a property (e.g. does not have matching of

size does not have a corresponding property
(e.g. does not have a flow of value

• Or equivalently (and this is often easier to prove):

• has a property (e.g. has flow of value has a

corresponding property (e.g. has a matching of value

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)

Remaining Plan
We will explore one application of network flow in detail today

• Matching in bipartite graphs

• Matchings are super practical with many applications

• We have already seen one, can you remember?

Next meeting: another application reducible to network flow
(baseball elimination)

• More practice with reductions

• (Reductions will come in handy on our next topic too!)

Bipartite Matching

Review: Matching in Graphs
Definition. Given an undirected graph , a matching

 of is a subset of edges such that no two edges in are
incident on the same vertex.

• Said differently, a node appears in at most one edge in

G = (V, E)
M ⊆ E G M

M

Review: Matching in Graphs
A perfect matching matches all nodes in

• Max matching problem. Find a matching of maximum
cardinality for a given graph

• That is, a matching with maximum number of edges

• Observation: If it exists, a perfect matching is maximum!

G

Review: Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two
subsets such that every edge connects and

• Bipartite matching problem. Given a bipartite graph
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

