Flow Networks:
Max Flow = Min Cut




Admin

* No pending problem set
* | will hand out an activity that | encourage you use for practice
e (Most) TA hours will still be held this weekend
 Ask TAs any guestions about the course
* Ask TAs about the activity (Ford-Fulkerson Algorithm)
* Questions about pre-registration?

 Lab usage?



Relationship between
Flows and Cuts



Recall: Cut Capacity

Recall. A cut (S, T) in a graph is a partition of vertices such that
SUuT=V SNT=¢g and¥, T are non-empty.

« Definition. An (s, f)-cutisacut(S,7)st.s€ Sandt e T

« Capacity of a (s, 1)-cut (S, T') is the sum of the capacities of

edges leaving 3:

c(S,T) = Z c(v - w)

veSweT



Recall: Flows and Cuts

e Cuts represent "bottlenecks’ in a flow network

« For any (s, f)-cut, all flow needs to “exit” S to getto ¢
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 \We will now formalize this intuition



Flows and Cuts

Claim. Let f be any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see (which ones?)

AN
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Flows and Cuts

To prove this for any cut, we first relate the flow value in a

network to the net flow leaving a cut

« Lemma. For any feasible (s, f)-flow fon G = (V, E) and
any (s, t)-cut, v(f) =1,,(8) —1..(S), where

. £,.4S) = Z f(v = w) (sum of flow ‘leaving’ S)

veS.weT

) [ (S) = 2 f(w — v) (sum of flow ‘entering’ S)

veS.weT

. Note: £, (S)=f,(T)and f,(S) =f, (T)



Flows and Cuts

Proof. £, (S)— £, (S)

= Z fv->w) — Z f(u — v) [by definition]

veS.weT veS,ueT
Adding zero terms

D fov-w= D flu-w|+ D fo->w— D fu—v)

i VWES V,UES ] veS,weTl veS,ueT
These are the same sum: o O

they sum the flow of all edges
with both vertices in §




Flows and Cuts

Proof. [, (S)—/. (S) Rearranging terms

DY foosw= Y fu—-n|+ D fo-ow— ) fu—v)

V,WES V,UES veS,weT veS,ueT

=Zf(v_>w)+ Z f(v—>w)—2f(u—>v)— Z flu - v)

V,2WES veS.weT V,UeS veS,.ueTl
=Y (Y fv—>w) =Y flu—v))

veS w u
= D fout) = fu¥) © ®

veS

= fou$) =v(f) 1 Cancels out for all except s, O
which has no f,,



Flows and Cuts

We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network.

Claim. Let f be any s-f flow and (S, T') be any s-f cut then

V(f) < C(S, T) Sum of capacities leaving S
Proof. v(f) =f,,AS) = fin(5)
< £ (S) = Z v = w) Whenis v(f) = ¢(S,T)?

veSweT /

< Z clv,w)=1c(S,T)
veS,weT f:.(8) =0, f.(S)=c(S,T)




Max-Flow & Min-Cut

Suppose the ¢, Is the capacity of the minimum cut in a network
What can we say about the feasible flow we can send through it
e cannot be more than ¢;,,

In fact, whenever we find any s-f flow f and any s-f cut (S, T) such
that, v(f) = ¢(S, T') we can conclude that:

« fisthe maximum flow, and,
e (S,7)isthe minimum cut
IS It

The guestion now is, given any flow network with min cut ¢,

always possible to route a feasible s-f flow f with v(f) = ¢,



Max-Flow Min-Cut Theorem

There is a beautiful, powerful relationship between these two
problems in given by the following theorem.

« Theorem. Given any flow network G, there exists a feasible
(s, 1)-flow f and an (s, t)-cut (S, T) such that,

v(f) =¢S5, T)
* Informally, in a flow network, the max-flow = min-cut
* This will guide our algorithm design for finding max flow

* (Will prove this theorem by construction in a bit.)



Network Flow History

* [n 1950s, US military researchers Harris and Ross wrote a
classitied report about the rail network linking Soviet Union
and Eastern Europe

* \ertices were the geographic regions
 Edges were railway links between the regions

* Edge weights were the rate at which material could be
shipped from one region to next

e Ross and Harris determined:

 Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

 Cheapest way to disrupt the network by
removing rail links (min cut)



Network Flow History
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Ford-Fulkerson Algorithm



Towards a Max-Flow Algorithm

We will design a max-flow algorithm and show that there is a s-f

cut s.t. value of flow computed by algorithm = capacity of cut

* Let's start with a greedy approach:

o Pick an s-f path and push as much flow as possible
down it

* Repeat until you get stuck

Note: This won't actually work, but it gives us a sense of

what we need to keep track of to improve it



Towards a Max-Flow Algorithm

Greedy strategy:
« Start with f(e) = 0 for each edge
« Findans ~ t path P where each edge has f(e) < c(e)
e “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* Let's explore an example



Towards a Max-Flow Algorithm

« Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

N



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Is this the best we can do!?

ending flow value = 16

T

@ 6/10 Q 8/9 Q 10/10 @ 10 +6=16
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19
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Why Greedy Fails

Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network

0. 2 ()

() 2 ()

« Greedy could choose s = v = w — tasfirst P

 Takeaway: Need a mechanism to “undo” bad tlow decisions



Ford-Fulkerson
Algorithm



Ford Fulkerson: Idea

Goal: Want to make “torward progress” while letting ourselves
undo previous decisions if they're getting in our way

* ldea: keep track of where we can push flow

* (Can push more flow along an edge with remaining
capacity

» (Can also push flow “back” along an edge that already
has flow down it (undo a previous flow push)

 Need a way to systematically track these decisions



Residual Graph

Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, cf) is defined as follows:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
ereverse € E; with capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge




Flow Algorithm Idea

Now we have a residual graph that lets us make forward
progress or push back existing flow

We will look for § ~ ¢ paths in Gf rather than G

Once we have a path, we will "augment’ flow along it similar to
greedy

e find bottleneck capacity edge on the path and push that
much flow through it in Gy

When we translate this back to G, this means:
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge



Augmenting Path & Flow

« An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

Path that repeats
no vertices

« The bottleneck capacity b of an augmenting path P is the
minimum capacity of any edge in P.

Some s ~ t path P in G
AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.

FOREACH edge e € P :

If/else update flow in IF (e € E, that is, e is forward edge )
G,not G .
not &y Increase f{e) in G by b
ELSE
Decrease f{e) in G by b

RETURN f.



Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.



Fora-Fulkerson Example

network G and flow f

@ 0/10

residual network Gr

() 10

QO

0/2

O

flow

NS

0/4

0/9

capacity

@

0/6

O

7
o value of flow

l
0/10 @ 0

residual capacity

/

0

—



Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow / capacity
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Fora-Fulkerson Example

network G and flow f
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Analysis: Ford-Fulkerson



Analysis Outline

Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
Optimality:

* Final value of flow is the maximum possible
Running time:

 How long does it take for the algorithm to terminate”
Space:

 How much total space are we using?



Feasibility of Flow

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

f' < AUGMENT(f, P), then f'is a feasible flow.

« Proof. Only need to verify constraints on the edges of P
(since f = ffor other edges). Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) =0
« Conservation constraint hold on any node in u € P:

o fi(u) =71, (u), therefore f; (u) = f (u) for both cases



Value of Flow: Making Progress

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

< AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. First edge e € P must be out of § in Gf

« (P is simple so never visits s again)
« ¢ must be a forward edge (P is a path from § to 1)
« Thus f(e) increases by b, increasing v(f) by b I

 Note. Means the algorithm makes forward progress each time!
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