Flow Networks:
Max Flow = Min Cut

Admin

* No pending problem set
* | will hand out an activity that | encourage you use for practice
e (Most) TA hours will still be held this weekend
 Ask TAs any guestions about the course
* Ask TAs about the activity (Ford-Fulkerson Algorithm)
* Questions about pre-registration?

 Lab usage?

Relationship between
Flows and Cuts

Recall: Cut Capacity

Recall. A cut (S, T) in a graph is a partition of vertices such that
SUuT=V SNT=¢g and¥, T are non-empty.

« Definition. An (s, f)-cutisacut(S,7)st.s€ Sandt e T

« Capacity of a (s, 1)-cut (S, T') is the sum of the capacities of

edges leaving 3:

c(S,T) = Z c(v - w)

veSweT

Recall: Flows and Cuts

e Cuts represent "bottlenecks’ in a flow network

« For any (s, f)-cut, all flow needs to “exit” S to getto ¢

e00000 00 0 [

o)
000000
000000000000000

 \We will now formalize this intuition

Flows and Cuts

Claim. Let f be any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see (which ones?)

AN

Flows and Cuts

Claim. Let f be any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see (which ones?)

AN

Flows and Cuts

To prove this for any cut, we first relate the flow value in a

network to the net flow leaving a cut

« Lemma. For any feasible (s, f)-flow fon G = (V, E) and
any (s, t)-cut, v(f) =1,,(8) —1..(S), where

. £,.4S) = Z f(v = w) (sum of flow ‘leaving’ S)

veS.weT

) [(S) = 2 f(w — v) (sum of flow ‘entering’ S)

veS.weT

. Note: £, (S)=f,(T)and f,(S) =f, (T)

Flows and Cuts

Proof. £, (S)— £, (S)

= Z fv->w) — Z f(u — v) [by definition]

veS.weT veS,ueT
Adding zero terms

D fov-w= D flu-w|+ D fo->w— D fu—v)

i VWES V,UES] veS,weTl veS,ueT
These are the same sum: o O

they sum the flow of all edges
with both vertices in §

Flows and Cuts

Proof. [, (S)—/. (S) Rearranging terms

DY foosw= Y fu—-n|+ D fo-ow—) fu—v)

V,WES V,UES veS,weT veS,ueT

=Zf(v_>w)+ Z f(v—>w)—2f(u—>v)— Z flu - v)

V,2WES veS.weT V,UeS veS,.ueTl
=Y (Y fv—>w) =Y flu—v))

veS w u
= D fout) = fu¥) © ®

veS

= fou$) =v(f) 1 Cancels out for all except s, O
which has no f,,

Flows and Cuts

We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network.

Claim. Let f be any s-f flow and (S, T') be any s-f cut then

V(f) < C(S, T) Sum of capacities leaving S
Proof. v(f) =f,,AS) = fin(5)
< £ (S) = Z v = w) Whenis v(f) = ¢(S,T)?

veSweT /

< Z clv,w)=1c(S,T)
veS,weT f:.(8) =0, f.(S)=c(S,T)

Max-Flow & Min-Cut

Suppose the ¢, Is the capacity of the minimum cut in a network
What can we say about the feasible flow we can send through it
e cannot be more than ¢;,,

In fact, whenever we find any s-f flow f and any s-f cut (S, T) such
that, v(f) = ¢(S, T') we can conclude that:

« fisthe maximum flow, and,
e (S,7)isthe minimum cut
IS It

The guestion now is, given any flow network with min cut ¢,

always possible to route a feasible s-f flow f with v(f) = ¢,

Max-Flow Min-Cut Theorem

There is a beautiful, powerful relationship between these two
problems in given by the following theorem.

« Theorem. Given any flow network G, there exists a feasible
(s, 1)-flow f and an (s, t)-cut (S, T) such that,

v(f) =¢S5, T)
* Informally, in a flow network, the max-flow = min-cut
* This will guide our algorithm design for finding max flow

* (Will prove this theorem by construction in a bit.)

Network Flow History

* [n 1950s, US military researchers Harris and Ross wrote a
classitied report about the rail network linking Soviet Union
and Eastern Europe

* \ertices were the geographic regions
 Edges were railway links between the regions

* Edge weights were the rate at which material could be
shipped from one region to next

e Ross and Harris determined:

 Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

 Cheapest way to disrupt the network by
removing rail links (min cut)

Network Flow History

11973
'SEGRET gy

Gronis]

Fig. 7 — Traffic patiern: entive
natwork available

Legend:
=— .+ —— |nterpational boundary

@ Railway operating division

«ng]-—— Capacity: 12 each way per day. .

Sequired flow of O per day toword
destinations (in direction of arrow;}
with equivalent number of returning
trains in opposite direction

. trai ‘
Al capacities in \/IE)%'C;\'SS of tonsf €GCh way per day

Origins: Divisions 2, 3W, 3E, 28, I3N, 138,
12,52 (USSR), and Roumania 4

‘Pestingtions: Divisions 3, 6,9 (Poland);)
B { Czechoslovavakial; and 2, 3 {Austrla}

aotae . : SR T
_Alternative destinations: Germany or East -
Germany '

" Note 11X at Division 9, Poland

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States
Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

Ford-Fulkerson Algorithm

Towards a Max-Flow Algorithm

We will design a max-flow algorithm and show that there is a s-f

cut s.t. value of flow computed by algorithm = capacity of cut

* Let's start with a greedy approach:

o Pick an s-f path and push as much flow as possible
down it

* Repeat until you get stuck

Note: This won't actually work, but it gives us a sense of

what we need to keep track of to improve it

Towards a Max-Flow Algorithm

Greedy strategy:
« Start with f(e) = 0 for each edge
« Findans ~ t path P where each edge has f(e) < c(e)
e “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* Let's explore an example

Towards a Max-Flow Algorithm

« Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

flow }apacity
Qo0
Q 0/2 0, 0/6 o
. 8 ‘0

@ 0/10 Q 0/9 Q 0/10 @/O

value of flow

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ ¢ path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O 0/2 ¢, 0/6 -

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O WS 2 8/2 s, 0/6 -

Jomo Q—z/g —)O—Lg/m —)@ 8 +2=10

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

N

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Is this the best we can do!?

ending flow value = 16

T

@ 6/10 Q 8/9 Q 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
O @

N\ 2/2 e, 6/6 -

|
@—\: 6/10 —)O 8/9 @ 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Y4
@— 6/'10'—)0 8/9 Q 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

is— @D
A\
]
)
A\
A\

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

!

(o2}
N
-
o
(o)

~N

©

-
o
N
-
o
-
o
+

(@)
I

—_
(@)

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Do

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

N\ 2/2 &,

!
@ 6/10 Q 8/9 Q v, 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

SN

/|
@ 6/10 Q 8/9 Q 10/ 10 @ 10 +6 =16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

L

@ 9/10 Q 9/9 Q 10/10 @ 19

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

OO

2 3
9/10 ©+ 9/9—)0 10/10 @ 19

Why Greedy Fails

Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network

0. 2 ()

() 2 ()

« Greedy could choose s = v = w — tasfirst P

 Takeaway: Need a mechanism to “undo” bad tlow decisions

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea

Goal: Want to make “torward progress” while letting ourselves
undo previous decisions if they're getting in our way

* ldea: keep track of where we can push flow

* (Can push more flow along an edge with remaining
capacity

» (Can also push flow “back” along an edge that already
has flow down it (undo a previous flow push)

 Need a way to systematically track these decisions

Residual Graph

Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, cf) is defined as follows:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
ereverse € E; with capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge

Flow Algorithm Idea

Now we have a residual graph that lets us make forward
progress or push back existing flow

We will look for § ~ ¢ paths in Gf rather than G

Once we have a path, we will "augment’ flow along it similar to
greedy

e find bottleneck capacity edge on the path and push that
much flow through it in Gy

When we translate this back to G, this means:
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge

Augmenting Path & Flow

« An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

Path that repeats
no vertices

« The bottleneck capacity b of an augmenting path P is the
minimum capacity of any edge in P.

Some s ~ t path P in G
AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.

FOREACH edge e € P :

If/else update flow in IF (e € E, that is, e is forward edge)
G,not G .
not &y Increase f{e) in G by b
ELSE
Decrease f{e) in G by b

RETURN f.

Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

Fora-Fulkerson Example

network G and flow f

@ 0/10

residual network Gr

() 10

QO

0/2

O

flow

NS

0/4

0/9

capacity

@

0/6

O

7
o value of flow

l
0/10 @ 0

residual capacity

/

0

—

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 0 0O/6 =
Q\\ & 0 value of flow

l
@ 0/10 Q 0/9 Q 0/10 @ 0

P in residual network Gs

: O
AN

6 0

e N

O I~ ¢ W ()

Fora-Fulkerson Example

network G and flow f flow capacity

NS
0\0/4 ®
\Q/O/Z S, 0O/6 0/7
& e\ © value of flow
@/ O oo O—— @) ¢

residual network Gr

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 S 0O/6 =
%\\ ‘8 0 value of flow

l
@ 0/10 Q 0/9 Q 8/10 @ 8

P in residual network Gs

Fora-Fulkerson Example

network G and flow f

l

O 2/2
2O

o b

residual network Gr

&——O

capacity

v

Sl @

0
S, 0/6 -
S 0 value of flow

2/9)O— 10/10—)@ 8+2 =10

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q
N\ 2/9 S 0/6 <
\ ‘8 0 value of flow

l
@ 0/10 Q 2/9 Q 10/10 @ 10

P in residual network Gs

N

2 S 6 0

Fora-Fulkerson Example

network G and flow f

@

O 2/2
2O

SO

residual network Gr

)

capacity

v

‘ \value of flow

8/9)O 10/10 @ 10+6 =16

| Oc—nv—~0

Fora-Fulkerson Example

network G and flow f flow capacity

O -

Q ~
N 2/2 S 6/6
\ & 0 value of flow

l
@ 6/10 Q 8/9 Q 10/10 @ 16

fixes mistake from

P in residual network Gs second augmenting path

b >

Fora-Fulkerson Example

network G and flow f flow capacity

O 0/2 8, 6/6 S

O l \value of flow

@—8/10—)@ 8/9 Q 10/10 @ 18

residual network Gr 2
O 2 @
&
<3
2 (o4 6
O

Fora-Fulkerson Example

network G and flow f flow capacity

S I

Q
N 0/2 (< 6/6 -~
\ ‘8 0 value of flow

l
@ 8/10 Q 8/9 Q 10/10 @ 18

P in residual network Gs
’\Q \ \

(S —2>O0— ' —2>0—

Fora-Fulkerson Example

network G and flow f flow / capacity
3/4 >
Q 9
% 0/2 < 6/6 “7

O \ \value of flow

@—9/10—)@ 9/9)O 10/10 @ 19

residual network Gr 3

Ge—s—-0 9 O A1)

1 No s-t path left!

Fora-Fulkerson Example

network G and flow f

@

O 0/2
2O

Capacity of cut?

() O

residual network Gr

9/10

nodes reachable from s

flow

9/9

v

capacity

@

6/6

O

“
o value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Analysis: Ford-Fulkerson

Analysis Outline

Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
Optimality:

* Final value of flow is the maximum possible
Running time:

 How long does it take for the algorithm to terminate”
Space:

 How much total space are we using?

Feasibility of Flow

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

f' < AUGMENT(f, P), then f'is a feasible flow.

« Proof. Only need to verify constraints on the edges of P
(since f = ffor other edges). Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) =0
« Conservation constraint hold on any node in u € P:

o fi(u) =71, (u), therefore f; (u) = f (u) for both cases

Value of Flow: Making Progress

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

< AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. First edge e € P must be out of § in Gf

« (P is simple so never visits s again)
« ¢ must be a forward edge (P is a path from § to 1)
« Thus f(e) increases by b, increasing v(f) by b I

 Note. Means the algorithm makes forward progress each time!

Acknowledgments

e Some of the material in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

