Algorithms: Max Flow

Consider the graph in Model 1 and the algorithm below. The algorithm claims to find in a graph V, E the maximum flow $f(e) \forall e \in E$ through the graph. On line 3, it arbitrarily chooses an unsaturated path and adds flow to it. What is an ordering of choices that enables this algorithm to successfully find a maximum flow?

1. Initialize $f(e) \leftarrow 0$ for all $e \in E$
2. repeat
3. Find an unsaturated path P from s to t
4. $a \leftarrow$ minimum excess capacity $c(e) - f(e)$ among all edges $e \in P$
5. $f(e) \leftarrow f(e) + a$ for each edge $e \in P$
6. until no more unsaturated $s \leftarrow t$ paths

What is an ordering of choices that prevents this algorithm from finding a maximum flow?

Learning objective: Students will derive an efficient algorithm for finding the flow of maximum value in a graph.

Model 1: Graph

![Graph Diagram]
Model 2: Flow Graphs
Definition 1. Given a network \(G = (V, E) \) and a flow \(f \) on \(G \), we define the residual graph \(G_f \) as \(G_f = (V, E_f) \), with

\[
E_f = \{ e \in E \mid c(e) - f(e) > 0 \} \cup \{ e^R \mid e \in E, f(e) > 0 \}
\]

(where \(e^R \) denotes the reverse of edge \(e \), i.e., if \(e = (u, v) \), then \(e^R = (v, u) \) and we define the capacities of edges in \(E_f \) by

- \(c_f(e) = c(e) - f(e) \), and
- \(c_f(e^R) = f(e) \).

3 Based on the given definition of a residual graph, draw a residual graph for each of the flow graphs depicted in Model 2.
4. Consider the algorithm below.

1. Initialize $f(e) \leftarrow 0$ for all $e \in E$
2. repeat
3. $\alpha \leftarrow \min \{c_f(e) \mid e \in P\}$
4. $f(e) \leftarrow f(e) + \alpha$ for each $e \in P$ such that $e \in E$
5. $f(e) \leftarrow f(e) - \alpha$ for each $e \in P$ such that $e^R \in E$
6. until no paths exist from s to t in G_f

This algorithm, the Ford-Fulkerson algorithm, uses the residual graph G_f instead of the original graph to find augmenting paths. We execute lines 3, 4 and 5 because we have found an augmenting path in the residual graph.

Use the Ford-Fulkerson algorithm to find a flow on the graph in Model 3. Select paths in any order you like.

Model 3: Original Graph

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.
5. Is the flow you computed in the previous question the maximum possible flow? Why or why not?