
Divide and Conquer:
Sorting and Recurrences

Divide & Conquer: The Pattern
• Divide the problem into several independent smaller instances

of exactly the same problem

• Delegate each smaller instance to the Recursive Leap of Faith
(technically known as induction hypothesis)

• Combine the solutions for the smaller instances

Review: Merge Sort
MergeSort():L

if has one elementL
return L

Divide into two halves and L A B
 MergeSort()A ← A
 MergeSort()B ← B
 Merge(,)L ← A B

return L

Base case

Recursive leaps of faith

Combine solutions

• Scan sorted lists from left to right

• Compare element by element; create new merged list

Merge Step: Θ(n)

a
122 94 11

i

31 7 145 13
b

j

k

a
122 94 11

i

31 7 145 13
b

j

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1 2

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3 4

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Merge Step: Θ(n)

merged list c

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3 4 5

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Yada yada yada…

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3 4 5 7 9 11 12 1413

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Correctness: D&C Algorithms
• Proving Correctness (often follow proof by induction pattern)

• Show base case holds

• Assume your recursive calls return the correct solution
(induction hypothesis)

• Inductive step: crux of the proof

• Must show that the solutions returned by the recursive
calls are “combined” correctly

Correctness Sketch: Merge Sort
• Claim. (Combine step.) Merge subroutine correctly merges two

sorted subarrays and where .

• Will prove that for the first iterations of the loop, correctly
merges and (from to).

• Invariant: Merged array is sorted after every iteration.

• Base case:

• Algorithm correctly merges two empty subarrays

• For inductive step, there are multiple cases, including ,

• for each case, must show that newly added element maintains
sorted-ness

A[1,…i] B[1,…, j] i + j = n

k
A B n = 0 n = k

k = 0

ai ≤ bj ai > bj

Analyzing Running Time
• For this topic, our main focus will be on analysis of running time

• We analyze the running time of recursive functions by:

• Considering the recursive calls: both the number of calls
made and the size of the inputs to each call

• e.g., merge sort on an input of size makes two recursive
calls each on an input of size

• The time spent “combining” solutions (“non-recursive
work”) returned by recursive calls

• e.g. merge step combines the sorted arrays in time

• Using the two, we typically write a running time recurrence

n
n/2

Θ(n)

Running Time Recurrence
• Let represent the worst-case running time of merge sort on an

input of size

•

• Base case: ; often ignored

• We will ignore the floors and ceilings (turns out it doesn't matter for
asymptotic bounds; we’ll show this later)

• So the recurrence simplifies to:

•

• The answer to this ends up being

• The next slides will discuss different ways to derive this

T(n)
n

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)

T(n) = O(n log n)

Recurrences: Unfolding
Method 1. Unfolding the recurrence

• Assume (that is,)

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 that is greater than

. That is,

• We can explicitly add in our constants 

 = (change of variable, replace)

 = =

 =

 =

n = 2ℓ ℓ = log n

n n < n′￼= 2ℓ < 2n

T(n) = 2T(n/2) + cn 2T(2ℓ−1) + c2ℓ n

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ c2ℓ

…

= 2ℓT(20) + cℓ2ℓ = O(n log n)

Recurrences: Recursion Tree
Method 2. Recursion Trees

• Work done at each level

• Total levels

2i ⋅ (n/2i) = n
log2 n Recommended

Method!

• This is really a method of visualization

• Very similar to unrolling, but much easier to keep
track of what’s going on

• It’s not (quite) a proof, but generally it is sufficient for
reasoning about running times in this class

• “Solve the recurrence” can be done by drawing
the recursion tree and explaining the solution

Recurrences: Recursion Tree

Recurrences: Guess & Verify
Method 3. Guess and Verify

• Eyeball recurrence and make a guess

• Verify guess using induction

• More on this later…

(Anonymous)

Feedback!

• What aspect(s) of the course do you like most?

• What aspect(s) of the course do you like least?

• In what CS courses that you’ve taken so far have you needed to
spend more time than you have in this course?

• In what CS courses that you’ve taken so far have you needed to
spend less time than you have in this course?

• Is there anything that you’d like me to know at this point in the
semester?

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

