Divide and Conquer:
Sorting and Recurrences



Divide & Conquer: The Pattern

* Divide the problem into several independent smaller instances
of exactly the same problem

* Delegate cach smaller instance to the Recursive Leap of Faith
(technically known as induction hypothesis)

e Combine the solutions for the smaller instances
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Review: Merge Sort

MergeSort(L):

if 1. has one element
return L
Divide L into two halves A and B
B < MergeSort(B)

return L




Merge Step: ®O(n)

e Scan sorted lists from left to right

« Compare element by element; create new merged list
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 !
1 J
1 2
T
k

merged list ¢



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i] <= b[j] ?

e Yes, a[1] appended to c, advance 1

e No, b[Jj] appended to c, advance j
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Yada yada yada...



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Correctness: D&C Algorithms

* Proving Correctness (often follow proof by induction pattern)

e Show base case holds

* Assume your recursive calls return the correct solution
(induction hypothesis)

e [nductive step: crux of the proof

* Must show that the solutions returned by the recursive
calls are “combined” correctly



Correctness Sketch: Merge Sort

e Claim. (Combine step.) Merge subroutine correctly merges two
sorted subarrays A[1,...i] and B[1,...,j] where i +j = n.

 Will prove that for the first k iterations of the loop, correctly
merges A and B (fromn = O ton = k).

e Invariant: Merged array is sorted after every iteration.
« Base case: k=0
e Algorithm correctly merges two empty subarrays

. Forinductive step, there are multiple cases, including a; < bj, a; > bj

e for each case, must show that newly added element maintains
sorted-ness



Analyzing Running Time

* For this topic, our main focus will be on analysis of running time
 We analyze the running time of recursive functions by:

 Considering the recursive calls: both the number of calls
made and the size of the inputs to each call

e €.g., merge sort on an input of size n makes two recursive
calls each on an input of size n/2

 The time spent “combining” solutions (“non-recursive
work”) returned by recursive calls

¢ ©.9. merge step combines the sorted arrays in ®(n) time

* Using the two, we typically write a running time recurrence



Running Time Recurrence

Let T(n) represent the worst-case running time of merge sort on an
input of size n

T(n) =T([n/2])+ T(|n/2]) + O(n)
Base case: 1(1) = 1; often ignored

We will ignore the floors and ceilings (turns out it doesn't matter for
asymptotic bounds; we’ll show this later)

So the recurrence simplifies to:
e T(n)=2T(n/2)+ O(n)
« The answer to this ends up being T(n) = O(nlogn)

* The next slides will discuss different ways to derive this



Recurrences: Unfolding

Method 1. Unfolding the recurrence
. Assume n = 27 (thatis, £ = log n)

 Because we don't care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 that is greater than

n.Thatis n <n' =2¢ < 2n

 We can explicitly add in our constants

T(n) =2T(n/2) + cn = 2TQ27™Y + ¢27 (change of variable, replace n)
=2QTQ7 )+ 27 Y + 20 = 22T 2 + 2 - 27
=3T3 + 3. ¢2¢

= 2/T2Y) + ¢£2 = O(nlogn)



Recurrences: Recursion Tree

Method 2. Recursion Trees

. Work done at each level 2! - (n/2") = n

. Total log, n levels Recommended
Method!
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Recurrences: Recursion Tree

 Thisis really a method of visualization

* Very similar to unrolling, but much easier to keep
track of what's going on

e |t's not (quite) a proot, but generally it is sufficient for
reasoning about running times in this class

* “Solve the recurrence” can be done by drawing
the recursion tree and explaining the solution



Recurrences: Guess & Verity

Method 3. Guess and Verity
* Eyeball recurrence and make a guess

* \Verify guess using induction

e More on this later...



(Anonymous)

Feedback!

What aspect(s) of the course do you like most?
What aspect(s) of the course do you like least?

In what CS courses that you've taken so far have you needed to
spend more time than you have in this course?

In what CS courses that you've taken so far have you needed to
spend less time than you have in this course?

Is there anything that you'd like me to know at this point in the
semester?
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