
Divide and Conquer: 
Sorting and Recurrences



Divide & Conquer: The Pattern
• Divide the problem into several independent smaller instances 

of exactly the same problem


• Delegate each smaller instance to the Recursive Leap of Faith 
(technically known as induction hypothesis)


• Combine the solutions for the smaller instances



Review: Merge Sort
MergeSort( ):L

if  has one elementL
return L

Divide  into two halves  and L A B
  MergeSort( )A ← A
  MergeSort( )B ← B
  Merge( , )L ← A B

return L

Base case

Recursive leaps of faith

Combine solutions



• Scan sorted lists from left to right


• Compare element by element; create new merged list

Merge Step: Θ(n)
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Merge Step: Θ(n)

merged list c
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merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j



Yada yada yada…
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j



Correctness: D&C Algorithms
• Proving Correctness (often follow proof by induction pattern)


• Show base case holds


• Assume your recursive calls return the correct solution 
(induction hypothesis) 


• Inductive step: crux of the proof


• Must show that the solutions returned by the recursive 
calls are “combined” correctly 



Correctness Sketch:  Merge Sort
• Claim.  (Combine step.) Merge subroutine correctly merges two 

sorted subarrays  and  where .


• Will prove that for the first  iterations of the loop, correctly 
merges  and  (from  to ).


• Invariant:  Merged array is sorted after every iteration.


• Base case: 


• Algorithm correctly merges two empty subarrays


•  For inductive step, there are multiple cases, including , 


• for each case, must show that newly added element maintains 
sorted-ness

A[1,…i] B[1,…, j] i + j = n

k
A B n = 0 n = k

k = 0

ai ≤ bj ai > bj



Analyzing Running Time
• For this topic, our main focus will be on analysis of running time


• We analyze the running time of recursive functions by:


• Considering the recursive calls:  both the number of calls 
made and the size of the inputs to each call 


• e.g., merge sort on an input of size  makes two recursive 
calls each on an input of size 


• The time spent “combining” solutions (“non-recursive 
work”) returned by recursive calls


• e.g. merge step combines the sorted arrays in  time


• Using the two, we typically write a running time recurrence

n
n/2

Θ(n)



Running Time Recurrence
• Let  represent the worst-case running time of merge sort on an 

input of size 


• 


• Base case: ; often ignored 


• We will ignore the floors and ceilings (turns out it doesn't matter for 
asymptotic bounds; we’ll show this later)


• So the recurrence simplifies to:


•  


• The answer to this ends up being 


• The next slides will discuss different ways to derive this

T(n)
n

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)

T(n) = O(n log n)



Recurrences: Unfolding
Method 1. Unfolding the recurrence 


• Assume  (that is, )  


• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 that is greater than 

. That is, 


• We can explicitly add in our constants 

   =   (change of variable, replace )


         =  = 


         = 


         = 


        

n = 2ℓ ℓ = log n

n n < n′￼= 2ℓ < 2n

T(n) = 2T(n/2) + cn 2T(2ℓ−1) + c2ℓ n

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ c2ℓ

…

= 2ℓT(20) + cℓ2ℓ = O(n log n)



Recurrences: Recursion Tree
Method 2.  Recursion Trees


• Work done at each level 


• Total  levels

2i ⋅ (n/2i) = n
log2 n Recommended 


Method!



• This is really a method of visualization


• Very similar to unrolling, but much easier to keep 
track of what’s going on


• It’s not (quite) a proof, but generally it is sufficient for 
reasoning about running times in this class


• “Solve the recurrence” can be done by drawing 
the recursion tree and explaining the solution

Recurrences: Recursion Tree



Recurrences: Guess & Verify
Method 3.  Guess and Verify


• Eyeball recurrence and make a guess


• Verify guess using induction


• More on this later… 



(Anonymous)

Feedback!

• What aspect(s) of the course do you like most?


• What aspect(s) of the course do you like least?


• In what CS courses that you’ve taken so far have you needed to 
spend more time than you have in this course?


• In what CS courses that you’ve taken so far have you needed to 
spend less time than you have in this course?


• Is there anything that you’d like me to know at this point in the 
semester?



Acknowledgments
• Some of the material in these slides are taken from


• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)


• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

