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Shortest Path Problem

Shortest path in a network.
! Directed graph G = (V, E).
! Source s, destination t.
! Length !e = length of edge e.

Shortest path problem:  find shortest (directed) path from s to t.
Single source shortest path problem:  find shortest directed path from   

s to every node in V

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 48.
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cost of path = sum of edge costs in path
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Dijkstra's Algorithm

Dijkstra's algorithm.
! Maintain a set of explored nodes S for which we have determined the 

shortest path distance d(u) from s to u.
! Initialize S = { s }, d(s) = 0.
! Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).
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Dijkstra's Algorithm

Dijkstra's algorithm.
! Dijkstra’s algorithm is a greedy algorithm.

– What defines a “step” towards our goal? 
– What is our optimization criteria at each step?

! The result is a globally optimal solution to the  SSSP problem!

! How to implement?
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Dijkstra's Algorithm:  Implementation

For each unexplored node, explicitly maintain 

! Next node to explore = node with minimum p(v).
! When exploring v, for each incident edge e = (v, w), update

Efficient implementation.  Maintain a priority queue of unexplored 
nodes, prioritized by p(v).

PQ Operation

Insert
ExtractMin
ChangeKey

Binary heap

log n
log n
log n

Array

n
n
1

IsEmpty 11

Priority Queue

Total m log nn2
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Dijkstra's Algorithm Pseudocode

Dijkstra(G, s):
let Tß({s}, ∅)
let PQ be an empty priority queue

for each neighbor v of s, add edge (s,v) to PQ with priority l(e) 
while T doesn’t have all verFces of G and PQ is non-empty:

repeat {
eßPQ.removeMin() // skip edges with both ends in T 

} unFl PQ is empty or e=(u,v) for u∈T, v ∉ T 
if e=(u,v) for u∈T, v ∉ T 

add e (and v) to T
for each neighbor w of v 

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w) 
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Dijkstra's Algorithm:  Proof of Correctness

Invariant.  For each node u Î S, d(u) is the length of the shortest s-u path.
Pf.  (by induction on |S|)
Base case: |S| = 1 and d(s)=0, which is true.
Inductive hypothesis: Assume true for |S| = k ≤ n.  Consider |S|=k+1
! Let v be last node added to S, and let u-v be the chosen edge.
! By inductive hypothesis, all nodes in S-{v} have correct shortest path dis.
! Claim: the s-u path plus (u, v) is an s-v path of shortest length p(v).

– Consider any s-v path P. We'll see that it's no shorter than p(v).
– Let x-y be the first edge in P that leaves S-{v},

and let P' be the subpath to x.

! (P) ³ ! (P') + ! (x,y) ³ d(x) + ! (x, y) ³ p(y)  ³ p(v)
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