
1

Shortest Path Problem

Shortest path in a network.
! Directed graph G = (V, E).
! Source s, destination t.
! Length !e = length of edge e.

Shortest path problem: find shortest (directed) path from s to t.
Single source shortest path problem: find shortest directed path from

s to every node in V

Cost of path s-2-3-5-t
= 9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

cost of path = sum of edge costs in path

2

Dijkstra's Algorithm

Dijkstra's algorithm.
! Maintain a set of explored nodes S for which we have determined the

shortest path distance d(u) from s to u.
! Initialize S = { s }, d(s) = 0.
! Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).

s

v

u
d(u)

S

!e

shortest path to some u in explored
part, followed by a single edge (u, v)

3

Dijkstra's Algorithm

Dijkstra's algorithm.
! Maintain a set of explored nodes S for which we have determined the

shortest path distance d(u) from s to u.
! Initialize S = { s }, d(s) = 0.
! Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).

s

v

u
d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

!e

4

Dijkstra's Algorithm

Dijkstra's algorithm.
! Dijkstra’s algorithm is a greedy algorithm.

– What defines a “step” towards our goal?
– What is our optimization criteria at each step?

! The result is a globally optimal solution to the SSSP problem!

! How to implement?

s

v

S

!e

5

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

! Next node to explore = node with minimum p(v).
! When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by p(v).

PQ Operation

Insert
ExtractMin
ChangeKey

Binary heap

log n
log n
log n

Array

n
n
1

IsEmpty 11

Priority Queue

Total m log nn2

6

Dijkstra's Algorithm Pseudocode

Dijkstra(G, s):
let Tß({s}, ∅)
let PQ be an empty priority queue

for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all verFces of G and PQ is non-empty:

repeat {
eßPQ.removeMin() // skip edges with both ends in T

} unFl PQ is empty or e=(u,v) for u∈T, v ∉ T
if e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)

7

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u Î S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| = 1 and d(s)=0, which is true.
Inductive hypothesis: Assume true for |S| = k ≤ n. Consider |S|=k+1
! Let v be last node added to S, and let u-v be the chosen edge.
! By inductive hypothesis, all nodes in S-{v} have correct shortest path dis.
! Claim: the s-u path plus (u, v) is an s-v path of shortest length p(v).

– Consider any s-v path P. We'll see that it's no shorter than p(v).
– Let x-y be the first edge in P that leaves S-{v},

and let P' be the subpath to x.

! (P) ³ ! (P') + ! (x,y) ³ d(x) + ! (x, y) ³ p(y) ³ p(v)

nonnegative
weights

inductive
hypothesis

defn of p(y) Dijkstra chose v
instead of y

S-{v}

s

y

v

x

P

u

P'

