Shortest Path Problem

Shortest path in a network.
» Directed graph G = (V, E).
= Source s, destination t.

. Length £, = length of edge e. cost of path = sum of edge costs in path

Shortest path problem: find shortest (directed) path from s to t.
Single source shortest path problem: find shortest directed path from
s to every node in V

9 /V@ 23 Cost of path s-2-3-5-t

1 = 9+23+2+ 16
8
14) 6 = 48.
30 19
11
15 5 /'Q
6
20 16

Dijkstra's Algorithm

Dijkstra's algorithm.
» Maintain a set of explored nodes S for which we have determined the
shortest path distance d(u) from s to u.
= Initialize S ={s}, d(s) = 0.
» Repeatedly choose unexplored node v which minimizes

a(v)= . (m/l)r:]ues d(u) +1 ,

add vto S, and set d(v) = a{v). shortest path to some u in explored
part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.
» Maintain a set of explored nodes S for which we have determined the
shortest path distance d(u) from s to u.
= Initialize S ={s}, d(s) = 0.
» Repeatedly choose unexplored node v which minimizes

a(v)= . (val)r:]ues d(u) +1 ,

add vto S, and set d(v) = a{v). shortest path to some u in explored
part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.
= Dijkstra’s algorithm is a greedy algorithm.
- What defines a “step” towards our goal?
- What is our optimization criteria at each step?

» The result is a globally optimal solution to the SSSP problem!

» How to implement?

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain 7(vy = min dw+1,.
e=(uVv):ues
« Next node to explore = node with minimum =(v).
- When exploring v, for each incident edge e = (v, w), update

(w) = min { (W), T+, }. »

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by n(v).

PQ Operation Binary heap

n log n
n log n
1 log n
1 1
Total n2 m log n

Dijkstra's Algorithm Pseudocode

Dijkstra(G, s):
let T&<({s}, @)
let PQ be an empty priority queue

for each neighbor v of s, add edge (s,v) to PQ with priority I(e)
while T doesn’t have all vertices of G and PQ is non-empty:
repeat {
e< PQ.removeMin() // skip edges with both ends in T
}until PQ is empty or e=(u,v) for ueT, ve T
ife=(u,v) forueT, ve T
adde (andv)to T
for each neighbor w of v
add edge (v,w) to PQ with weight/key d(s,v) + I(v,w)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on [Sl)
Base case: IS|I =1 and d(s)=0, which is true.
Inductive hypothesis: Assume true for ISl = k < n. Consider ISI=k+1
= Letv be last node added to S, and let u-v be the chosen edge.
« By inductive hypothesis, all nodes in S-{v} have correct shortest path dis.
« Claim: the s-u path plus (u, v) is an s-v path of shortest length =n(v).
- Consider any s-v path P. We'll see that it's no shorter than n(v).
- Let x-y be the first edge in P that leaves S-{v},
and let P' be the subpath to x.

S-{v}
7 (P) I> LY+ 1 (xy) IZ d(x) + ¢ (x, Y)IZ (y) IZ 7(v)

nonnegative inductive defn of n(y) Dijkstra chose v
weights hypothesis instead of y

