Graphs and Traversals
Reminders/ Check in

- **Assignment 01** due tonight at 10 pm
- Assignment 02 will be released later today
- If you haven’t done so already, check out Problem Set Advice
- Take advantage of office hours today:
 - Mine: 1.30-3 pm, TAs: 3-5pm, 7-10 pm
- Questions?

- Announcements?
Today’s Outline

• Formal definitions of graph terms
• Review common approaches for graph representation
• Review breadth-first search
• Review depth-first search
• Search Proofs (runtime, correctness)
Review: Undirected Graphs

An undirected graph $G = (V, E)$

- V is the set of nodes, E is the set of edges
- Graph size parameters: $n = |V|$, $m = |E|$
- Sometimes we consider weighted graphs, where each edge e has a weight $w(e)$

Unweighted, Undirected Graph

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}$

$n = 8$, $m = 11$
Representing Graphs (Review)

Option 1a: Adjacency matrix.

- n-by-n matrix where $A[u][v] = 1$ if $(u, v) \in E$

$n = |V|$, $m = |E|$
Option 1a: Adjacency matrix.

- \(n \)-by-\(n \) matrix where \(A[u][v] = 1 \) if \((u, v) \in E\)
- Space \(O(n^2) \)?
- Checking if \((u, v) \in E\) takes \(O(1) \) time?

\[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
3 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
5 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
7 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
8 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\end{array} \]

\(n = |V|, \ m = |E| \)
Option 1b: Adjacency list.

- Array of lists, where each list stores the neighbors of a given node

$n = |V|$, $m = |E|$
Option 1b: Adjacency list.

- Array of lists, where each list stores the neighbors of a given node
- Space $O(n + m)$?
- Checking if $(u, v) \in E$ takes $O(\text{degree}(u))$ time?

$n = |V|$, $m = |E|$
A path in an undirected graph $G = (V, E)$ is a sequence of nodes u_1, u_2, \ldots, u_k such that every pair $(u_{i-1}, u_i) \in E$.

A path is simple if all nodes are distinct.

The length of a path is the number of edges on the path.

An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v (every node is reachable from all other nodes).

A connected component is the set of all vertices/edges reachable from some vertex v.

A connected graph has 1 connected component.

A cycle is path u_1, u_2, \ldots, u_k where $u_1 = u_k$ ($k \geq 2$).

A cycle is simple if all internal nodes are distinct.
Trees (Review)

An undirected graph is a **tree** if it is **connected** and **acyclic** (i.e., it does not contain a cycle)

Lemma. Let G be an undirected graph with n nodes. Then any two of these conditions imply the third

- G is connected
- G does not contain a cycle
- G has $n - 1$ edges
Graph Traversals

A few common questions we ask about a graph $G = (V, E)$:

- **Connectivity.** How do we verify if a graph is connected?
- **Reachability.** Given $s, t \in V$, is there a path between them?

Answers can be determined by “traversing the graph”

- Two classic graph traversal algorithms:
 - Breadth-first search (BFS)
 - Depth-first search (DFS)

- BFS & DFS are remarkably similar algorithms that merely differ in the data structure used
Breadth-first Search

Explore outwards in all possible directions from starting point, peeling “one layer after another”

• BFS algorithm: Initialize $L_0 = \{v\}$

 • $L_1 =$ all neighbors of L_0

 • $L_2 =$ all nodes that do not belong to L_0 or L_1 that are adjacent to a node in L_1

 • \ldots

 • $L_{i+1} =$ all nodes that do not belong an earlier layer that are adjacent to a node in L_i
BFS Implementation

We need data structures to represent:

• Nodes that we have not encountered yet
• Nodes that we have encountered but not yet “explored”
• Nodes that have been “fully explored” (encountered all its neighbors as well)
Suppose we are currently exploring node u

- Its neighbors will be marked “encountered”, but when will they be explored compared to other encountered but unexplored nodes?

- **BFS Idea**: Explore all nodes at level i (same distance from initial node) before moving on to level $i + 1$
 - Rule: first encountered node should be first node to be explored

- Which data structure should we use?
 - Queue! First-in-first-out
BFS Implementation: Queue

BFS (G, s):
Set status of all nodes to unmarked
Place s into the queue Q
While Q is not empty
Extract v from Q
If v is unmarked
Mark v
For each edge (v, w):
Put w into the queue Q

Observations:
• Nodes that we have not encountered have never been added to Q
• When a node u is marked (after extraction from Q), all u’s neighbors are then enqueued, so the next time we see u we can ignore it — its already been explored!
• We may enqueue some nodes multiple times, but we only explore them once (if a marked node is extracted, it is skipped)
BFS Example
We can remember parent nodes (the node at level i that lead us to a given node at level $i+1$).

Keeping track of these relationships produces a tree rooted at s.

BFS-Tree(G, s):
- Put (\emptyset, s) in the queue Q.
- While Q is not empty:
 - Extract (p, v) from Q.
 - If v is unmarked:
 - Mark v.
 - parent(v) = p.
 - For each edge (v, w):
 - Put (v, w) into the queue Q (*)
BFS Analysis

• Inserting and extracting an edge from a queue: $O(1)$ time
• For each marked node ν, we run the for loop for its edges: $O(n)$ times
• Overall running time? $O(n^2)$
 • Can we do better?
• Yes! We can improve our analysis to $O(n + m)$
 • Node u has degree(u) incident edges (u, ν)
 • Total time processing edges: $\sum_{u \in V} \text{degree}(u) = 2m$

 each edge (u, ν) is counted exactly twice
 in sum: once in degree(u) and once in degree(ν)
Depth-First Search
If we change how we store the visited vertices (the data structure we use), it changes how we traverse the graph.

BFS (G, s):
- Set status of all nodes to unmarked.
- Place s into the queue Q.
- While Q is not empty:
 - Extract v from Q.
 - For each edge (v, w):
 - If w is unmarked:
 - Mark w.
 - Put w into the queue Q.
Stack Instead of Queue

If we change how we store the visited vertices (the data structure we use), it changes how we traverse the graph

\[
\text{DFS (G, s)}:
\]

\[
\begin{align*}
&\text{Set status of all nodes to unmarked} \\
&\text{Place s into the stack } S \\
&\text{While } S \text{ is not empty} \\
&\quad \text{Extract v from } S \\
&\quad \text{For each edge (v, w):} \\
&\quad \quad \text{If w is unmarked} \\
&\quad \quad \quad \text{Mark w} \\
&\quad \quad \quad \text{Put w into the stack } S
\end{align*}
\]
Depth-First Search: Recursive

DFS is perhaps the more natural traversal algorithm to write.

- Can be written **iteratively** or **recursively**
- Both DFS versions are the same; can actually see the “recursion stack” in the iterative version

Recursive-DFS(u):

Set status of u to marked # encountered u
for each edge (u, v):
 if v's status is unmarked:
 DFS(v)
done exploring neighbors of u
Example Graph
DFS Running Time

We can apply the same analysis as we did for BFS.

- Inserts and extracts to a stack: $O(1)$ time
- Setting status of each node to unmarked: $O(n)$
- Each node is set marked at most once; equivalently DFS(u) is called at most once for each node
- For every node v, explore degree(v) edges
 \[\sum_v \text{degree}(v) = 2m \]
- Overall, running time $O(n + m)$
DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):
 Put (∅, s) in the stack S
 While S is not empty
 Extract (p, v) from S
 If v is unmarked
 Mark v
 parent(v) = p
 For each edge (v, w):
 Put (v, w) into the stack S

The spanning tree formed by parent edges in a DFS are usually long and skinny
Proving Correctness
DFS Correctness

- DFS finds precisely the set of nodes reachable from start node s
- That is, $DFS(s)$ marks node x iff node x is reachable from s
- **Proof.** (\Rightarrow)
 - Since x is marked, $(x, \text{parent}(x))$ is an edge in the graph
 - **Claim.** $x \rightarrow \text{parent}(x) \rightarrow \text{parent}($parent$(x)) \rightarrow \cdots$ leads to s
 - Induction on the order in which vertices are marked
 - Suppose claim holds for all vertices before some vertex u
 - Consider u: parent(u) must be discovered before u, and thus the claim holds for it, since $(u, \text{parent}(u))$ is an edge, we have a path from u to s
DFS Correctness

- DFS finds precisely the set of nodes reachable from start node s
- That is, DFS(s) marks node x iff node x is reachable from s

Proof (\iff)

- Suppose node x is reachable from s via path P, but x is not marked by DFS
- Since s is marked by DFS and x is not, there must be a first node v on P that is not marked by DFS
- Thus, there is an edge $(u, v) \in P$ such that u is marked and v is not marked
- But this cannot happen, since when u is marked, all its neighbors are also marked $\Rightarrow \iff \blacksquare$
BFS Correctness

- Breadth first search finds precisely the set of nodes reachable from s
- That is, $\text{BFS}(s)$ marks node x iff node x is reachable from s

Proof. (\Rightarrow)

- Since x is marked, $(x, \text{parent}(x))$ is an edge in the graph
- *Claim.* $x \rightarrow \text{parent}(x) \rightarrow \text{parent}(\text{parent}(x)) \rightarrow \cdots$ leads to s
- Induction on the order in which vertices are marked
- Let $u_1, u_2, \ldots, u_k, \ldots, u_n$ denote the order in which vertices are marked, suppose claim holds all vertices with index less than k
- Consider u_k: parent(u_k) must be discovered before u_k, and thus the claim holds for it, since $(u_k, \text{parent}(u_k))$ is an edge, we have a path from u_k to s
BFS Correctness

- Breadth first search finds precisely the set of nodes reachable from s.
- That is, BFS(s) marks node x iff node x is reachable from s.
- **Proof.** (\Leftarrow)
 - Suppose node x is reachable from s via path P, but x is not marked by BFS.
 - Since s is marked by BFS and x is not, there must be a first node $v \neq s$ on P that is not marked by BFS.
 - Thus, there is an edge $(u, v) \in P$ such that u is marked and v is not marked.
 - But this cannot happen, since when u is marked, all its neighbors are also marked $\Rightarrow \Leftarrow$ \hfill \blacksquare