Largest Sum Subinterval & Asymptotic Analysis
Today’s Plan

• Look at a fun problem (Largest Subinterval Sum)
• Iteratively develop more efficient solutions
 • Prove some things to help us get there
• Take a step back and state precisely what we mean by efficiency
• Practice some asymptotic analysis
Largest Subinterval Sum

INPUT: An array A of n integers (1-indexed)

OUTPUT: The largest sum of any subinterval. The empty interval (which we will represent as $NULL$ has sum 0).

Example 1: Consider the array $(10, 20, -50, 40)$

- Subinterval $[1, 1] = 10$
- Subinterval $[1, 4] = 10 + 20 - 50 + 40 = 20$
- Subinterval $[2, 3] = 20 - 50 = -30$

The largest sum subinterval is 40, corresponding to $[4, 4]$.
Largest Subinterval Sum

INPUT: An array A of n integers (1-indexed)

OUTPUT: The largest sum of any subinterval. The empty interval (which we will represent as $NULL$ has sum 0).

Example 2: Consider the array $(-2,3, -2,4, -1,8, -20)$

The largest sum subinterval is 12, corresponding to $[2,6]$
Largest Subinterval Sum

INPUT: An array A of n integers (1-indexed)

OUTPUT: The largest sum of any subinterval. The empty interval (which we will represent as $NULL$ has sum 0).

Question: Is this problem interesting when the array’s integers are all positive?

No! Then the answer is always the entire interval…
Developing an Algorithm
Algorithm with $O(n^3)$ Steps

• Let’s start with an algorithm that corresponds directly to the problem definition:
 • We are looking for the latest sum of any sub-interval
 • How many total sub-intervals are there?
 • $\binom{n}{2}$ which is $\frac{n(n+1)}{2} = O(n^2)$
 • How long does it take to sum a sub-interval?
 • $O(n)$ (in the worst case, must sum entire array)

This brute-force algorithm takes $O(n^3)$ steps
LargestSum(A):

\[largest \leftarrow 0 \]
\[\text{for } i \leftarrow 1 \ldots n \]
\[\quad \text{for } j \leftarrow i \ldots n \]
\[\quad \quad sum \leftarrow 0 \]
\[\quad \quad \text{for } k \leftarrow i \ldots j \]
\[\quad \quad \quad sum \leftarrow sum + A[k] \]
\[\quad \quad largest \leftarrow \max(sum, largest) \]

\text{return} largest

Try walking through LargestSum(A) on a small example, like \(A = (10, 20, -50, 40) \)
Algorithm with $O(n^2)$ Steps

• The last algorithm repeated a lot of work. How?
 • If A had 7 integers, interval $[2,7]$ computed $[2,2]$, $[2,3]$, $[2,4]$, and so on...
 • Can we avoid this repeated work?

Idea: Compute and reuse a Partial Sum table

$$PS(j) = \sum_{i=1}^{j} A(i)$$
Algorithm with $O(n^2)$ Steps

Claim: We can use PS to compute the sum of any interval (i, j) in $O(1)$ time. How?

\[
\begin{array}{cccccccc}
A & & & & & & & \\
& -2 & 3 & -2 & 4 & -1 & 8 & -20 \\
PS & & & & & & & \\
0 & -2 & 1 & -1 & 3 & 2 & 10 & -10 \\
\end{array}
\]

\[PS(j) = \sum_{i=1}^{j} A(i)\]

$PS[i]$ contains sum of all integers “up until $A[i]”$, with a 0 for the empty array.
Algorithm with $O(n^2)$ Steps

$PS(j) = \sum_{i=1}^{j} A(i)$

Example: How to compute $A(3,6)$?

Subtract $PS[j] - PS[i-1]$.

A

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>3</th>
<th>-2</th>
<th>4</th>
<th>-1</th>
<th>8</th>
<th>-20</th>
</tr>
</thead>
</table>
P S

| | 0 | -2 | 1 | -1 | 3 | 2 | 10 | -10 |

| | -2 | 3 | -2 | 4 | -1 | 8 | -20 |

| | 0 | -2 | 1 | -1 | 3 | 2 | 10 | -10 |
LargestSum(A):

\[
PS \leftarrow \text{partial_sums}(A) \quad \text{// we can construct this in O(n) time}
\]

\[
largest \leftarrow 0
\]

for \(i \leftarrow 1 \ldots n \)

\[
\quad \text{for } j \leftarrow i \ldots n
\]

\[
\quad \quad \text{largest } \leftarrow \text{max}(\text{largest}, PS[j] - PS[i - 1])
\]

\[
\text{return largest}
\]

Each iteration performs \(O(1) \) work

\(O(n^2) \) iterations
Can We Do Even Better?
Algorithm with $O(n)$ Steps

Let $PS(j) = \sum_{i=1}^{j} A[i]$ give the partial sum of the first j integer values of A.

Let’s visualize an example $PS(j)$

- $A[j]$ is negative
- $A[i]$ is positive
- In this example, PS never dips below 0
Algorithm with $O(n)$ Steps

Observation 1: If $PS(j) \geq 0$ for all $1 \leq j \leq n$ then the largest sum subinterval is the interval $[1,k]$ where k maximizes $PS(k)$.

Proof. The proof is by contradiction.

Suppose $[1,k]$ did not give the largest sum. Then there is some other interval $[u,v]$ that has a larger sum. But shifting u to 1 cannot decrease the sum (since we would then be subtracting out 0), and shifting v to k cannot decrease the sum (since k maximizes $PS(k)$). Thus $[u,v]$ cannot be an interval with a larger sum.
Algorithm with $O(n)$ Steps

Let $PS(j) = \sum_{i=1}^{j} A[i]$ give the partial sum of the first j integer values of A.

Let’s visualize a second example $PS(j)$:
Algorithm with $O(n)$ Steps

Observation 2: When $PS(j)$ falls below 0 for the first time, then the largest sum subinterval never includes j—it falls on one side or the other. That is, when $PS(j)$ falls below 0 for the first time, the problem essentially “resets” with $PS(j)$ being “the new 0”.

Proof. The proof is by contradiction.

Suppose the largest sum subinterval $[u, v]$ contains the first point j where the partial sum drops below 0. Notice that $[u, j]$ corresponds to a negative sum. The interval $[j + 1, v]$ must be larger than $[u, v]$ since we are subtracting out a negative sum. This is a contradiction.
LargestSum(A):

\[
\text{sum, largest } \leftarrow 0 \\
\text{for } i \leftarrow 1 \ldots n \\
\quad \text{sum } \leftarrow \max(\text{sum } + A[i], 0) \\
\quad \text{largest } \leftarrow \max(\text{sum, largest}) \\
\]

\text{return largest}

This \(O(n)\) algorithm follows from our previous two observations.

- We only need to worry about sums corresponding to intervals where \(i\) is a new “0-point” for the partial sum and \(j\) maximizes the partial sum
- Going back to our visualization, we are calculating the largest difference between some valley and a subsequent peak
Analysis and Asymptotics

• Why should we examine problems analytically?
 • Analysis is independent of the algorithm’s implementation, the language the program is written in, and the hardware on which the program is run
 • Theoretical efficiency almost always implies a path towards practical efficiency
 • When there is a mismatch between a theoretical model’s predictions and the observed performance, there is an interesting systems problem to be solved!

My research group relies on this!
Analysis and Asymptotics

- Why use worst-case analysis?
 - Worst-case is a real guarantee.
 - Worst-case captures efficiency reasonably well in practice. Exceptions are rare (e.g., Quicksort) and interesting.
 - Average case is hard to quantify—we often don’t know the true distribution of inputs, so what are we analyzing the average of?
Analysis and Asymptotics

• What does efficient actually mean?
 • We will say an algorithm is efficient if it runs in time that is polynomial in the size of the input.
 • Practical efficiency probably maxes out somewhere between $O(n \log n)$ and $O(n^3)$, depending on the context.
 • Not brute force!
Analysis and Asymptotics

Why use asymptotic analysis?

- Precise bounds are difficult to calculate
- Precise runtime is dependent on external factors, often including things we don’t consider or can’t control (hardware, OS environment, compiler, …)
- We often want to compare algorithms, and equivalency up to constant factors is often the right level of detail to have those conversations
- Once we pick an efficient algorithm, we can optimize the “practical considerations”
Asymptotic Analysis
Big-O

Definition (Asymptotic upper bounds): \(f(n) \) is \(O(g(n)) \) if and only if there exists constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \leq c \cdot g(n) \)
Definition (Asymptotic upper bounds): $f(n)$ is $O(g(n))$ if and only if there exists constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \leq c \cdot g(n)$

Example:

$$f(n) = 3n^2 + 17n + 8 \leq 3n^2 + 17n^2 + 8n^2 \quad \text{For } n \geq 1$$

$$= 28n^2$$

Choosing $c = 28$ and $n_0 = 1$ means $f(n)$ is $O(n^2)$
Let $f(n) = 3n^2 + 17n \log_2 n + 1000$. Which of the following are true?

A. $f(n)$ is $O(n^2)$.

B. $f(n)$ is $O(n^3)$.

C. Both A and B.

D. Neither A nor B.
Big-Omega

Definition (Asymptotic lower bounds): $f(n)$ is $\Omega(g(n))$ if and only if there exists constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq c \cdot g(n)$
Definition (Asymptotic lower bounds): $f(n)$ is $\Omega(g(n))$ if and only if there exists constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq c \cdot g(n)$

Example: $f(n) = 3n^2 + 17n + 8$

$\geq 3n^2$ For $n \geq 0$

Choosing $c = 1$ and $n_0 = 0$ means $f(n)$ is $\Omega(n^2)$
Big-Theta

Definition (Asymptotic tight bounds): \(f(n) \) is \(\Theta(g(n)) \) if and only if \(f(n) \) is \(O(g(n)) \) and \(\Omega(g(n)) \).

Equivalently, if there exist constants \(c_1 > 0 \), \(c_2 > 0 \), and \(n_0 \geq 0 \) such that \(0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \) for all \(n \geq n_0 \).

Ideally, we’d strive for a “tight” bounds whenever we can!
Big Oh- Notational Abuses

• $O(g(n))$ is actually a set of functions, but the CS community writes $f(n) = O(g(n))$ instead of $f(n) \in O(g(n))$

• For example
 • $f_1(n) = O(n \log n) = O(n^2)$
 • $f_2(n) = O(3n^2 + n) = O(n^2)$
 • But $f_1(n) \neq f_2(n)$

• Okay to abuse notation in this way
Growth of Functions

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Playing with Logs: Properties

- In this class, \(\log n \) means \(\log_2 n \), \(\ln n = \log_e n \)

- Constant base doesn’t matter: \(\log_b(n) = \frac{\log n}{\log b} = O(\log n) \)

- Properties of logs:
 - \(\log(n^m) = m \log n \)
 - \(\log(ab) = \log a + \log b \)
 - \(\log(a/b) = \log a - \log b \)

\[a^{\log_a n} = n \]

We will use this a lot!
Comparing Running Times

• When comparing two functions, helpful to simplify first

• Is \(n^{1/\log n} = O(1) \)?

• Is \(\log \sqrt[4]{4^n} = O(n^2) \)?

• Is \(n = O(2^{\log_4 n}) \)?
Comparing Running Times

• When comparing two functions, helpful to simplify first

• Is \(n^{1/\log n} = O(1) \)?

 • Simplify \(n^{1/\log n} = (2^{\log n})^{1/\log n} = 2 : \text{True} \)

• Is \(\log \sqrt{4^n} = O(n^2) \)

 • Simplify \(\log \sqrt{2^{2n}} = \log 2^n = n \log 2 = O(n) : \text{True} \)

• Is \(n = O(2^{\log_4 n}) \)?

 • Simplify \(2^{\log_4 n} = 2^{\frac{\log_2 n}{\log_2 4}} = 2^{(\log_2 n)/2} = 2^{\log_2 \sqrt{n}} = \sqrt{n} : \text{False} \)
Tools for Comparing Asymptotics

• We can use limits to show asymptotic bounds

 • If \(\lim_{n \to \infty} \frac{f(x)}{g(x)} = 0 \), then \(f(x) = O(g(x)) \)

 • If \(\lim_{n \to \infty} \frac{f(x)}{g(x)} = c \) for some constant \(0 < c < \infty \), then \(f(x) = \Theta(g(x)) \)
Tools for Comparing Asymptotics

- Logs grow slowly than any polynomial:
 - $\log_a n = O(n^b)$ for every $a > 1$, $b > 0$
- Exponentials grow faster than any polynomial:
 - $n^d = O(r^n)$ for every $d > 1$, $r > 0$
- Taking logs
 - As $\log x$ is a strictly increasing function for $x > 0$, $\log(f(n)) < \log(g(n))$ implies $f(n) < g(n)$
 - E.g. Compare $3^{\log n}$ vs 2^n
 - Taking log of both, $\log n \log 3$ vs n
 - Beware: when comparing logs, constants matter!