CSCI 136
Data Structures &
Advanced Programming

Lecture 9
Fall 2018

Instructors: Bills



Administrative Details

e Remember: First Problem Set is online

* Due at beginning of class on Friday
e Lab 3 Today!

* You may work with a partner
* Come to lab with a plan!

* Answer questions before lab



Last Time

e Measuring Growth
* Big-O

* |Introduction to Recursion



Today

e More Recursion
e Mathematical Induction (Weak)

e Mathematical Induction (Strong)



Longest Increasing Subsequence

Given an array al] of positive integers, find the
largest subsequence of (not necessary consecutive)
elements such that for any pair alil, a[j] in the
subsequence, if i§j, then ali] < alj].

Example 10 7123511891 15has 3589 15 as
its longest increasing subsequence (LIS).

How could we find an LIS of a[]?
How could we prove our method was correct?
_et’ s think....




Longest Increasing Subsequence

(Brilliant) Observation: A LIS for a[l ... n] either
contains a[l] ... or it doesn’t.
Therefore, a LIS for a[l ... n] either

e contains a[|] along with an LIS for a[2 ... n] such that every
element in the LIS is > a[l], or

e IsalLlSforal2..n]
How could we find a LIS of a[]?

e Use the B.O. to build a recursive method

How could we prove our method was correct?

* |nduction!



Longest Increasing Subsequence

/I Pre: curr <= length
public static int lisHelper(int[] arr, int curr, int maxSoFar ) {
if(curr == arr.length) return O;
if(arr[curr] <= maxSoFar)
return lisHelper(arr, curr +1,maxSoFar);
else
return Math.max(
lisHelper(arr,curr +1,maxSoFar),

| + lisHelper(arr, curr +1, arr[curr]));



Recursion Tradeoffs

* Advantages
e Often easier to construct recursive solution
e Code is usually cleaner

* Some problems do not have obvious non-
recursive solutions

* Disadvantages
e Overhead of recursive calls

e Can use lots of memory (need to store state for
each recursive call until base case is reached)

* E.g. recursive fibonacci method



Proving Properties of Recursive
Algorithms

* Example: factorial

* Prove that fact(n) performs exactly n multiplications
e Certainly true when n = 0...

e Also, if—for some n—fact(n) performs exactly n multiplications,
then fact(n+1) clearly performs exactly those plus one more: n+|

e But fact(0) performs 0 multiplications, so fact(l) performs, fact(2)
performs 2, ....

 Said differently
e Base case: n = 0 returns |, performing 0 multiplications
e Assume that for some n, fact(n) performs n multiplications.

e fact(n+1) performs one multiplication directly: (n*fact(n-1)). We
know that fact(n) performed n multiplications., therefore fact(n+1)
performed n+| multiplications.



Mathematical Induction

Principle of Mathematical Induction (Weak)

Let P(0), P(1), P(2), ... Be a sequence of
statements, each of which could be either true or
false. Suppose that

1. P(0) is true, and
2. Whenever P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as
2. Whenever P(n—1) is true, then so is P(n).

Apology: [ do this a lot, as you’ Il see on future slides!



Mathematical Induction

The mathematical cousin of recursion is
induction

Induction is a proof technique

Reflects the structure of the natural
numbers

Use to simultaneously prove an infinite
number of theorems!



Mathematical Induction

e Example: Prove that for every n 2 0

P,: Yol =@.+n=@

e Proof by induction:

* Base case: P, is true for n = 0 (just check it!)

e Induction step: If P, is true for some n20, then

P,.1 Is true.
m+D((+1)+1) +Dn+2)

Poi1:0+1+ .+4n+(n+1)= > ;

n(n2+1) n (Tl n 1) _ (n+1)(n+2)

Check: 0+1+ ..+ n+(n+1) =

e First equality holds by assumed truth of P!



Mathematical Induction

e Prove: Ezi=20+21+22+...+2”=2”+1-1
=0

* Prove: 0°+1°+..+n° =(0+1+..+n)°



Proof: 0°+1’+..+n°=0+1+ ...+ n)°

Note: I'm doing the n-1 = n version

(0° 4+ 1° + ..n?%)
Induction="

(0° +1° 4+ ...+ (n—1)%) +n’
O+1+..4+(n—-1)*+n’

<n(n2— 1)>2 8




Counting Method Calls

e Example: Fibonacci
e Prove that fib(n) makes at least fib(n) calls to fib()

e Basecases:n=0:1calbn=1:1 call

e Assume that for some n2>2, fib(n—1) makes at least fib(n—1) calls
to fib() and fib(h—2) makes at least fib(n—2) calls to fib().

e Claim: Then fib(n) makes at least fib(n) calls to fib()

— 1 initial call: fib(n)
— By induction: At least fib(n—1) calls for fib(h—1)

— And as least fib(n—2) calls for fib(n—2)
— Total: 1 + fib(n—1) + fib(n—-2) > fib(nh—1) + fib(n—2) = fib(n) calls

* Note: Need two base cases!
e One can show by induction that for n > 10: fib(n) > (1.5)"
e Thus the number of calls grows exponentially!
e We can visualize this with a method call graph---.



Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)

Let Py, Py, P,, ... Be a sequence of statements,
each of which could be either true or false.
Suppose that

1. Pyand Py are true, and

2. Whenever P,_; and P,_, are true, then so is P,.
Then all of the statements are true!
Other versions:
e Can have k > 2 base cases
e Doesn’ t need to start at 0



Example: Binary Search

* Given an array a[] of positive integers in increasing
order, and an integer X, find location of x in a[].

e Take “indexOf” approach: return -1 if x is not in aJ[]
protected static int recBinarySearch(int a[], int value,

int low, int high) {
if (low > high) return -1;

else {
int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison

else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);

else //search lower half
return recBinarySearch(a, value, low, mid - 1);



Binary Search takes O(log n) Time

Can we use induction to prove this?

e Claim: If n = high — low + 1, then recBinSearch
performs at most ¢ (1+ log n) operations, where ¢ is
twice the number of statements in recBinSearch

e Base case:n =1: Then low = high so only ¢
statements execute (method runs twice) and ¢ <
c(1+log 1)

e Assume that claim holds for some n 2 1, does it
hold for n+1? [Note: n+1 > 1, so low < high]

* Problem: Recursive call is not on n——it’ s on n/2.

e Solution: We need a better version of the PMI---.



Mathematical Induction

Principle of Mathematical Induction (Strong)

Let P(0), P(1), P(2), ... Be a sequence of
statements, each of which could be either true or
false. Suppose that, for some k 2 0
1. P(0), P(1), ..., P(k) are true, and
2. Whenever P(1), P(2), ..., P(n) are true, then so is
P(n+1).

Then all of the statements are true!



Binary Search takes O(log n) Time

Try again now:

e Assume that for some n 2 1, the claim holds for a//
k £ n, does claim hold for n+1?

e Yes! Either

e x = a[mid], so a constant number of operations are
performed, or

e RecBinSearch is called on a sub—array of size n/2, and

by induction, at most c(1 + log (n/2)) operations are
performed.

e This gives a total of at most ¢ + c(1 + log(n/2)) = ¢ + c(log(2) +
log(n/2)) = ¢ + c(log n) = c(1 + log n) statements



Bubble Sort

e First Pass: e Third Pass:
e (51329)—>(15329) e (12359)->(12359)
e (15329)>(13529) e (12359)->(12359)
* (13529)>(13259) * Fourth Pass:
* (13259)—>(13259) e (12359)->(12359)

e Second Pass:
« (13259)—>(13259)
e (13259)—>(12359)
e (12359)—>(12359)

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting



http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

Sorting Preview: Insertion Sort

Simple sorting algorithm that works by building a
sorted list one entry at a time

Less efficient on large lists than more advanced
algorithms

Advantages:
e Simple to implement and efficient on small lists
* Efficient on data sets which are already substantially sorted

Time complexity
* O(n?)
Space complexity
* O(n)



Sorting Preview: Insertion Sort



Sorting Preview: Selection Sort

Similar to insertion sort
Performs worse than insertion sort in general

Noted for its simplicity and performance advantages
when compared to complicated algorithms

The algorithm works as follows:
* Find the maximum value in the list
e Swap it with the value in the last position

* Repeat the steps above for remainder of the list (ending at
the second to last position)



Sorting Preview: Selection Sort

3 27 5 |6
3 16 5 27
3 5 6 27
5 3 1l 6 27
3 5 1l 6 27

Time Complexity:
e O(n?
Space Complexity:
* O(n)



