CSCI 136
Data Structures &
Advanced Programming

Lecture 6

Fall 2017
Instructors: Bill & Bill

Last Time

* Miscellaneous Java
e modifiers for variables and methods

* Variable storage and memory management

* The class Object
* Provides default toString() and equals() methods

e Card Deck: Array and Vector versions

Today s Outline

Associations

Code Samples

* WordFreq, Dictionary (Associations, Vectors)
Generic Data Types

Lab 2 Design and Strategies

Vector Implementation

Miscellany: Wrappers

Condition Checking

* Pre- and post-conditions, Assertions

Recall: Vectors

* Vectors are collections of Objects
* Methods include:

add(Object o), remove(Object 0)

contains (Object 0)

indexOf (Object o)

get(int index), set(int index, Object o)
remove (i1nt index)

add(int index, Object o)

size(), 1sEmpty()

* Remove methods preserve order, close “gap”

Example: Word Counts

e Goal: Determine word frequencies in files

* |dea: Keep a Vector of (word, freq) pairs
* When a word is read...
* [f it’s not in the Vector, add it with freq =|I

* [f it is in the Vector, increment its frequency

* How do we store a (word, freq) pair!?

* An Association

Associations

Word — Definition
Account humber — Balance
Student name — Grades

Google:

e URL — page.html

e page.html — {a.html, b.html, ...} (links in page)
* word — {a.html, d.html, ...} (pages with word)
In general:

e Key — Value

Association Class

* We want to capture the “key — value”
relationship in a general class that we can use

everywhere
* What type do we use for key and value
instance variables?
e Object!

* We can treat any thing as an Object since all
classes inherently extend Object class in Java...

Association Class

// Association is part of the structure package
class Association {

protected Object key;

protected Object value;

//pre: key != null

public Association (Object K, Object V) {
Assert.pre (K!=null, “Null key”);
key = K;
value = V;

public Object getKey() {return key;}
public Object getValue() {return value;}

public Object setValue(Object V) {
Object old = value;
value = V;
return old;

}

// Continued on next slide...

Association Class

public boolean equals(Object other) {
if (other instanceof Association) {

Association otherAssoc = (Association)other;
return getKey().equals(otherAssoc.getKey());

}

else return false;

* Note: The actual structure package code does NOT
do the instanceof check (but it should).

* |nstead the method has a “pre-condition” comment
that says the other must be a non-null Association!

WordFreq.java

e Uses a Vector
e Each entry is an Association

* Each Association is a (String, Integer) pair

* Notes:
* Include structure.”;
e Can create a Vector with an initial capacity

e Must cast the Objects removed from Association
and Vector to correct type before using

Notes About Vectors

e Primitive Types and Vectors

Vector v = new Vector();
v.add(5);

e This (technically) shouldn’t work! Can’t use primitive data types with
vectors...they aren’t Objects!

e Java is now smart about some data types, and converts them
automatically for us -- called autoboxing

* We used to have to “box” and “unbox” primitive data types:

Integer num = new Integer(5);

v.add(num) ;

Integer result = (Integer)v.get(0);
int res = result.intValue();

e Similar wrapper classes (Double, Boolean, Character) exist
for all primitives

Dictionary.java

protected Vector defs;
public Dictionary() {
defs = new Vector();

public void addWord(String word, String def) {
defs.add(new Association(word, def));

// post: returns the definition of word, or "" if not found.
public String lookup(String word) {
for (int 1 = 0; i < defs.size(); i++) {
Association a = (Association)defs.get(1i);
if (a.getKey().equals(word)) {
return (String)a.getValue();

}

return

nn g
14

Dictionary.java

public static void main(String args[]) {
Dictionary dict = new Dictionary();

dict.addWord("perception", "Awareness of an object of
thought");

dict.addWord("person", "An individual capable of moral
agency'");

dict.addWord("pessimism", "Belief that things generally
happen for the worst");

dict.addWord("philosophy", "Literally, love of
wisdom.");

dict.addWord("premise", "A statement whose truth is used to
infer that of others");

Using Generic (Parameterized) Types

* What limitations are associated with casting Objects
as they are added and removed from Associations!?

* Errors cannot be detected by compiler
* Must rely on runtime errors

* |nstead of casting Obijects, Java supports using generic
or parameterized data types (Read Ch 4)

* |nstead of:

Association a = new Association(“Bill”, (Integer) 97);
Integer grade (Integer) a.getValue(); //Cast to String

e Use:

Association<String, Integer> a =

new Association<String, Integer>(”Bill”, (Integer) 97);
Integer grade = a.getValue(); //no cast!

Generic Association<K,V> Class

class Association<K,V> {
protected K theKey;
protected V theValue;

//pre: key != null

public Association (K key, V value) {
Assert.pre (key != null, “Null key”);
theKey = key;
theValue = value;

public K getKey() {return theKey;}
public V getValue() {return thevValue;}
public V setValue(V value) {

V old = theValue;

theValue = value;

return old;

Using Generic Data Types

* |Instead of casting Objects, Java supports using generic
or parameterized data types (Read Ch 4)

e |nstead of:
Vector v = new Vector(); //Vector of Objects

String word = (String)v.get(index); //Cast to String

e Use:
Vector<String> v = new Vector<String>(); //Vector of Strings
String word = v.get(index); //no cast!

e Or:

Vector<Association<String, Integer>> v =
new Vector<Association<String, Integer>>();
int count = v.get(index).getValue(); //no cast!

e See GenWordFreq.java...

(Look at WordFreq.java with gen)

Lab 2

Three classes:

e Table.java

* FrequencyLlist.java
* WordGen.java

Two Vectors of Associations
toString() in Table and FrequencyList for debugging

What are the key stages of execution?

e Test code thoroughly before moving on to next stage

Use WordFreq as example

Lab 2: Core Tasks

* FregencylList
* Vector< Association< Character, Integer > >
* Add a letter

e |s it a new letter or not!?

e Use indexOf for Vector class

* Pick a random letter based on frequencies
* Let total = sum of frequencies in FL
* generate random int r in range [O...total]

* Find smallest k s.t r >= sum of first k frequencies

Lab 2: Core Tasks

* Table
* Add a letter to a k-gram

* Is it a new k-gram or not!?

* Pick a random letter given a k-gram

* Find the k-gram then ask its FrequencylList to pick

* WordGen

e Convert input into (very long) String

e Use a StringBuffer---see handout

