
CSCI 136
Data Structures &

Advanced Programming
Lecture 35
Fall 2018

Bill J

Bill L
CS 237

CS 136

CS 256

2

Announcements

• Final Class !
• Help Opportunities"
• Office Hours Next Week: M/T/Th/F: 1-3 pm
• Review Session: Thursday, Dec. 13: 8-9 pm

• Final Exam is Monday, Dec. 17#
• 9:30-noon in Physics 203
• Cumulative, but focused on second half of course
• Sample exam and 2-page study sheet are on-line

3

Last Time

• Maps & Hashing

4

Today

• Hashing Wrap-up
• One More Problem
• Course Wrap-up

• SCS Forms

5

Hashtables: O(1) operations?
• How long does it take to compute a String’s

hashCode?
• O(s.length())

• Given an object’s hash code, how long does it
take to find that object?
• O(run length) or O(chain length) PLUS cost of

.equals() method

• Conclusion: for a good hash function (fast,
uniformly distributed) and small load factor, we
say operations take O(1) time
• But that’s not strictly true….

6

put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

array indexed by key O(1)* O(1)* O(key range)

Summary

*PolitiFact Rating: not quite Pants on Fire

7

What Can We Say For Sure?!

For external chaining
• Assuming the hashing function is equally likely

to hash to any slot
Theorem: A search will take O(1 + m/n) time,
on average
• n is table size, m is number of keys stored

• True for both successful and unsuccessful
searches
• Based on expected chain length

8

What Can We Say For Sure?!

For open addressing

• Assuming that all probe sequences are equally
likely [which is unlikely!]

• Assuming load factor 0 < ! < 1

Theorem: An unsuccessful search will perform,
on average, O(1 + !) probes

Theorem: A successful search will perform, on
average, O(

"
! log "

"&!) probes

More probe sequences ⇒ better average case

9

Perfect Hashing

In certain cases, it is possible to design a hashing
scheme such that
• Computing the hash takes O(1) time

• There are no collisions
• Different keys always have different hash values

This is called a perfect hashing scheme

10

Perfect Hashing

If keyspace is smaller than array size

• Handcraft the hashing function
• Ex: Reserved words in programming languages

• Make array really big
• Ex: All ASCII strings of length at most 4

• Hash is 32 bit number
• Array of size 4.3 billion will suffice

11

One More Problem!

• Given a graph G = (V,E) where
• V = X ∪ Y, with X ∩ Y = ∅
• Every edge has one vertex in X and one in Y

• Find a set of edges M ⊆ E such that
• No vertex is on more than one edge of M
• M is a large as possible

• G is called a bipartite graph and M is called a
maximum matching of G

• Fun facts
• G is bipartite iff the vertices of G can be 2-colored
• G is bipartite iff every cycle of G has even length

12

Finding a Maximum Matching

• Idea: Look for alternating path between non-matched
vertices

• Use it to augment the current matching
• Repeat until you can’t find any more of them.

Amazing Fact
If M is a matching in a bipartite graph and there is no
alternating path the augments M, then M is a maximum
matching for the graph!

Not too hard to prove
Uses structure of pairs of matchings

13

Wrapping Up

14

Dictionary Structures put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

hash table O(1)* O(1)* O(key range)

Why Data Structures?

*On average---with good design---Don’t forget!

15

Data Structure Selection

• Choice of most appropriate structure
depends on a number of factors
• How much data?

• Static (array) vs dynamic structure (vector/list)

• Which operations will be performed most often?
• Lots of searching? Use an ordered structure

– If items are comparable!

• Mostly traversing where order doesn’t matter: List

• Is worst case performance crucial? Average case?
• AVL tree vs SplayTree

16

Why Complexity Analysis?

• Provides performance guarantees
• Captures effects of scaling on time and space

requirements

• Independent of hardware or language

• Can guide appropriate data structure selection

17

Why Correctness Analysis?

• Provides behavior guarantees
• Independent of hardware or language
• Reduce wasted effort developing code

• A powerful debugging tool
• Program incorrect: Try to prove it is correct and

see where you get stuck
• Frequently, such proofs are inductive

18

Why Java?

What makes it worth having to type (or read!)

Map<Airport,ComparableAssociation<Integer,
Edge<Airport,Route>>> result = new
Table<Airport,ComparableAssociation<Integer,
Edge<Airport,Route>>>();

19

Why Java?

• Java provides many features to support
• Data abstraction : Interfaces
• Information hiding : public/protected/private
• Modular design : classes
• Code reuse : class extension; abstract classes
• Type safety : types are known at compile-time

• As well as
• Parallelism, security, platform independence,

creation of large software systems, embeddability
in browsers, ...

20

Why structure(5)?

• Provides a well-designed library of the most
widely-used fundamental data structures
• Focus on core aspects of implementation

• Avoids interesting but distracting “fine-tuning” code for
optimization, backwards compatibility, etc

• Allows for easy transition to Java’s own Collection
classes

• Full access to the source code
• Don’t like Duane’s HashMap---change it!

21

Why So Many Labs?
Because it’s fun and you got a chance to
• Implement a (simple) game - Coinstrip
• Learn about textual analysis - WordGen

• Grapple with large search problems
• Recursion, Two Towers, Exam Scheduling

• Do some data mining - Sorting
• Write (part of) a PL interpreter – PostScript

• Implement Data Structures
• Linked Lists and Lexicon

• Model and Simulate a Business Process

22

Want to Learn More?

• CS 237: Computer Organization
• Learn about the many levels of abstraction from

high-level language à assembly language à
machine language à processor hardware

• CS 256: Algorithm Design and Analysis
• We’ve only scratched the surface of what elegant

algorithm and data structure design can
accomplish. For a deeper dive, go here.

• A number of CS electives require one of these
two courses

23

Want to Learn More?

• CS 334: Principles of Programming Languages
• There are many different types of programming

languages: imperative, object-oriented, functional,
list-based, logic, ... Why!? What is required to
support languages of these kinds?

• CS Colloquium
• Weekly (Fridays at 2:30pm) presentations from

active researchers in CS from across the country

• Talk to Faculty and CS Majors
• They do interesting things!

