CSCI 136
Data Structures &
Advanced Programming

Lecture 32
Fall 2018

Instructors: Bills

Last Time

* Adjacency List Implementation Details

* Featuring many Iterators!

* More Fundamental Graph Properties

* An Important Algorithm: Minimum-cost
spanning subgraph

Today s QOutline

* More on Prim’s Algorithm

* More Core Algorithms: Directed Graphs
* Dijkstra’s Algorithm

Minimum-Cost Spanning Trees

Minimum-Cost Spanning Trees

Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow It Greedily!

* Pick a vertex and find its cheapest incident
edge. Now we have a (small) tree

* Repeatedly add the cheapest edge to the tree
that keeps it a tree (connected, no cycles)

* How close might this get us to the MCST?

Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
coloring

Recall: The Key

Lemma: Let G=(V,E) be a connected graph
and let V, and V, be a partition of V.

Then every MCST of G contains a cheapest
edge between V, and V,

Note: If all edge costs are distinct there is
only one cheapest edge between V, and V,

Using The Key to Prove Prim

We'll assume all edge costs are distinct
Otherwise proof is slightly less elegant

Let T be the tree produced by the greedy
algorithm and suppose T* is a MCST for G

Claim: T = T*

ldea of Proof: Show that every edge added to
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why! Use the key!

Using The Key

Now use induction!

Suppose, for some k 2 14 €hat the
first k edges added to T are in T*. These form
atree T,

Let V, be the vertices of T, and let V, = V-V,

Now, the greedy algorithm will add to T the
cheapest edge e between V, and V,

But any MCST contains the (only!) cheapest
edge between V, and V,, so e is in T*

Thiic the firet le4+ 1 adoec Af T are in T

Prim’s Algorithm

prim(G) /7 finds a MCST of connected G=(V,£)
let v be a vertex of G; set V< {v} and V& V- {v/
while(|V;[<|V])

let e cheapest edge between V;and V5

add e to MCST

let u&the vertex of ein Vs

move ufrom Vyto V;

Prim’s Algorithm

prim(G) /7 finds a MCST of connected G=(V,£)
let v be a vertex of G; set V< {v} and V& V- {v/
let A be the set of all edges between V; and V,
while(|V;[<|V])
let e cheapest edge in A between V; and V5
add e to MCST
let u<the vertex of ein Vs
remove from A any edges from V' to u

move ufrom Vyto V;
add to A all edges incident to u

Prim’s Algorithm (Variant)

* Note: If G is not connected, A will eventually be
empty even though |V,| < |V]|
* We fix this by
* Replacing while(|V,| < |V|) with
e while(|V,| < |V]) && AZD)
* Replacing
* until e is an edge between V, and V,
* with
o until AZD or e is an edge between V, and V,
* Then Prim will find the MCST for the component
containing v

Prim’s Algorithm (Variant)

prim(G) /7 finds a MCST of connected G=(V,£)
let v be a vertex of G; set V< {v} and V& V- {v/
let A be the set of all edges between V; and V,
while |V, |<| V| && |A| >0
repeat
remove cheapest edge e from A
until A is empty | | e is an edge between V; and V
if e is an edge between V; and V5
let v&<the vertex of ein Vs

move v from Vyto Vi,
add to A all edges incident to v

Implementing Prim’s Algorithm

We'll “build” the MCST by marking its edges
as “visited” in G

We'll “build” V| by marking its vertices visited

How should we represent A?

* What operations are important to A!
* Add edges
* Remove cheapest edge

e A priority queue!

When we remove an edge from A, check to
ensure it has one end in each of V, and V,

ComparableEdge Class

* Values in a PriorityQueue need to implement
Comparable

* We wrap edges of the PQ in a class called
ComparableEdge

* |t requires the label used by graph edges to be of
a Comparable type

Prim’s Algorithm (Variant)

prim(G) /7 finds a MCST of connected G=(V,£)
let v be a vertex of G; set V< {v} and V& V- {v/
let A be the set of all edges between V; and V,
while |V, |<| V| && |A| >0
repeat
remove cheapest edge e from A
until A is empty | | e is an edge between V; and V
if e is an edge between V; and V5
let v&<the vertex of ein Vs

move v from Vyto Vi,
add to A all edges incident to v

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> g

new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree

g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;

\% vi.next();

MCST: The Code

// visit the vertex and add all outgoing edges
g.visit(v);
Iterator<String> ai = g.neighbors(v);

while (ai.hasNext()) {
// turn it into outgoing edge

e = g.getEdge(v,ai.next());
// add the edge to the queue

g.add(new
ComparableEdge<String,Integer>(e));

MCST: The Code

searching = true;

while

}

(searching && !g.isEmpty()) {

// grab next shortest edge

e = g.remove();

// Is e between V; and V, (subtle code!!)

v = e.there();

if (g.isVisited(v)) v = e.here();

if (!g.isVisited(v)) {
searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));

} while (!searching);

20

Prim : Space Complexity

Graph: O(|V| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue O(]E|)

* Each edge takes up constant amount of space

Every other object (including the neighbor
iterator) uses a constant amount of space

Result: O(|V] + |E|)
e Optimal in Big-O sense!

21

Prim : Time Complexity

Assume Map ops are O(l) time (not quite true!)
For each iteration of do ... while loop

* Add neighbors to queue: O(deg(v) log |E|)

* |terator operations are O(1) [Why?]
e Adding an edge to the queue is O(log |E|)

* Find next edge: O(# edges checked * log |E|)
 Removing an edge from queue is O(log |E|) time

e All other operations are O(l) time

22

Prim : Time Complexity

Over all iterations of do ... while loop

Step |: Add neighbors to queue:
e For each vertex, it's O(deg(v) log |E|) time

* Adding over all vertices gives

Y _ deg(v)loglEl=logl E1Y, _ deg(v)=logl EI#2IE]1

e which is O(|E| log |E|) = O(|E| log |V|)
o |E| SIV¥WI?2solog|[E| < log |¥W]|2=2log|V|=
O(log [V])

23

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)

* Each edge is checked at most once
e Adding over all edges gives O(|E| log |E|) again
Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log |V|)
e Typically written as O(m log n)
* Where m= |E| and n = |V]

24

Single Source Shortest Paths

The Problem: Given a graph G and a starting
vertex v, find, for each vertex u # ¥

reachable from v, a shortest path from v to u.

*The Single Source Shortest Paths Problem

*Arises in many contexts, including network
communications

*Uses edge weights (but we’ll call them
“lengths”): assume they are non-negative
numbers

*Could be a directed or undirected graph

25

Single Source Shortest Paths

We'll look at directed graphs
* So the paths must be directed paths

Let’s think....

Suppose we have a set shortest paths {P, : u#
v}, where P, is a shortest path from v to u

Let H be the subgraph of G consisting of each
vertex of G along with all of the edges in each

P

u

What can we say about H!?

26

Single Source Shortest Paths

Observations

* |f some vertex u has in-degree greater than |,
we can drop one of the incoming edges: Why!?

* Only the last edge of the shortest path from v-u is
needed as an in-edge to u [Why!]

e So we assume H has in-deg(u)=1 for all u#Ww
* We need no in-edges for v [Why?]
* H can’t have any directed cycles
* Well, v can’t be on any cycles (in-deg(v) = 0)

* |f there were a cycle, some vertex on it would
have in-degree > | [Why!]

27

Single Source Shortest Paths

Observations

* |n fact, even disregarding edge directions,
there would be no cycles

e Some vertex would have in-degree at least 2
* Or else there’s a directed cycle (Why?)

e So, we can assume that there is some set of
shortest paths that forms a (directed) tree

* This suggests that we try again to
Greedily grow a tree

* The question is: How!?

28

The Right Kind of Greed

e Build a MCST?

* No: It won’t always give shortest paths

e A start: take shortest edge from start vertex s
* That must be a shortest path!

* And now we have a small tree of shortest paths

* What next!
* Design an algorithm thinking inductively

* Suppose we have found a tree T, that has shortest
paths from s to the k-1 vertices “closest” to s

* What vertex would we want to add next!?

29

Finding the Best Vertex to Add to T,

Not all edges are displayed

Question: Can we find the next closest vertex to s?

30

What's a Good Greedy Choice?

O ldea: Pick edge e from
'““‘1 O uin T, tovin G-T, that
aﬂ"“ minimizes the length
Wi © © @ ofthetreepathfroms
N A up to—and through—e
O °
O O
"v‘ 9/ Nowaddvandeto Ty
O

to get tree T, .4

Now T,. is a tree consisting of shortest paths from s to the
K vertices closest to s! [Proof?] Repeat until k = |V|

31

