
CSCI 136
Data Structures &

Advanced Programming

Lecture 31
Fall 2018

Instructors: Bills

2

Last Time

• Greedy Algorithms for Optimization
• Lab 10 : Exam Scheduling
• Adjacency List Implementation Details

3

Today�s Outline

• GraphList Wrap-up
• An Important Algorithm: Minimum-cost

spanning subgraph

5

GraphListVertex Iterators
// Iterator for incident edges
public Iterator<Edge<V,E>> adjacentEdges() {

return adjacencies.iterator();
}

// Iterator for adjacent vertices
public Iterator<V> adjacentVertices() {

return new GraphListAIterator<V,E>
(adjacentEdges(), label());

}

GraphListAIterator creates an Iterator over vertices based on
the Iterator over edges produced by adjacentEdges()

6

GraphListAIterator

public GraphListAIterator(Iterator<Edge<V,E>> i, V v) {
edges = (AbstractIterator<Edge<V,E>>)i;
vertex = v;

}

public V next() {
Edge<V,E> e = edges.next();
if (vertex.equals(e.here()))

return e.there();
else { // could be an undirected edge!

return e.here();
}

GraphListAIterator uses two instance variables

protected AbstractIterator<Edge<V,E>> edges;
protected V vertex;

7

GraphListEIterator
GraphListEIterator uses one instance variable

protected AbstractIterator<Edge<V,E>> edges;

GraphListEIterator
•Takes the Map storing the vertices
•Uses it to build a linked list of all edges
•Gets an iterator for this linked list and stores it, using it in its own
methods

8

GraphList

• To implement GraphList, we use the GraphListVertex
(GLV) class

• GraphListVertex class
• Maintain linked list of edges at each vertex
• Instance vars: label, visited flag, linked list of edges

• GraphList abstract class
• Instance vars:

• Map<V,GraphListVertex<V,E>> dict; // label -> vertex
• boolean directed; // is graph directed?

• How do we implement key GL methods?
• GraphList(), add(), getEdge(), …

9

protected GraphList(boolean dir){
dict = new Hashtable<V,GraphListVertex<V,E>>();
directed = dir;

}

public void add(V label) {
if (dict.containsKey(label)) return;
GraphListVertex<V,E> v = new

GraphListVertex<V,E>(label);
dict.put(label,v);

}

public Edge<V,E> getEdge(V label1, V label2) {
Edge<V,E> e = new Edge<V,E> (get(label1),
get(label2), null, directed);
return dict.get(label1).getEdge(e);

}

10

GraphListDirected

• GraphListDirected (GraphListUndirected) implements
the methods requiring different treatment due to
(un)directedness of edges
• addEdge, remove, removeEdge, …

11

// addEdge in GraphListDirected.java
// first vertex is source, second is destination
public void addEdge(V vLabel1, V vLabel2, E label) {

// first get the vertices
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);
// create the new edge
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), label, true);
// add edge only to source vertex linked list (aka adjacency list)
v1.addEdge(e);

}

12

public V remove(V label) {
//Get vertex out of map/dictionary
GraphListVertex<V,E> v = dict.get(label);

//Iterate over all vertex labels (called the map �keyset�)
Iterator<V> vi = iterator();
while (vi.hasNext()) {

//Get next vertex label in iterator
V v2 = vi.next();

//Skip over the vertex label we're removing
//(Nodes don't have edges to themselves...)
if (!label.equals(v2)) {

//Remove all edges to "label"
//If edge does not exist, removeEdge returns null
removeEdge(v2,label);

}
}
//Remove vertex from map
dict.remove(label);
return v.label();

}

13

public E removeEdge(V vLabel1, V vLabel2) {
//Get vertices out of map
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);

//Create a �temporary� edge connecting two vertices
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), null, true);

//Remove edge from source vertex linked list
e = v1.removeEdge(e);
if (e == null) return null;
else return e.label();

}

14

Efficiency Revisited

• Assume Map operations are O(1) (for now)
• |E| = number of edges
• |V| = number of vertices

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?
• Conclusions

• Matrix is better for dense graphs
• List is better for sparse graphs
• For graphs “in the middle” there is no clear winner

15

Efficiency : Assuming Fast Map
Matrix GraphList

add O(1) O(1)

addEdge O(1) O(1)

getEdge O(1) O(|V|)

removeEdge O(1) O(|V|)

remove O(|V|) O(|V|+|E|)

space O(|V|2) O(|V|+|E|)

16

Applications

17

Minimum-Cost Spanning Trees

18

Minimum-Cost Spanning Trees

19

Basic Graph Properties

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’)
where
• V’ ⊆ V
• E’ ⊆ E, and
• If e ∈ E’ where e = {u,v}, then u, v ∈ V’

• Special Subgraphs
• If E’ contains every edge of E having both ends in V’, then

G’ is called the subgraph of G induced by V’
• If V’ = V, then G’ is called a spanning subgraph of G

20

Basic Graph Properties

• Recall: An undirected graph G=(V,E) is
connected if for every pair u,v in V, there is a
path from u to v (and so from v to u)

• The maximal sized connected subgraphs of G
are called its connected components
• Note: They are induced subgraphs of G

• An undirected graph without cycles is a forest

• A connected forest is called a tree.
• Not to be confused with the data structure!

21

Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at
least one vertex v of degree 1 (a leaf)

• Let’s prove this: Consider a longest simple path in G…

Thm: If G=(V,E) is a tree then |E| = |V| - 1.
• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a
spanning subgraph G’=(V,E’) that is a tree

• That is, a spanning tree

Proof idea:
• If G is not a tree, then it contains a cycle C
• Removing an edge from C leaves G connected (why)

• Repeat until no more cycles remain

22

Edge-Weighted Graphs

• An edge-weighting of a graph G=(V,E) is an
assignment of a number (weight) to each edge
of G
• We write the weight of e as w(e) or we

• The weight w(G’) of any subgraph G’ of G is
the sum of the weights of the edges in G’

• We will focus on edge-weights that are non-
negative, so if G’ is a subgraph of G, then
w(G’) ≤ w(G)

23

A Famous Problem

• Given a connected, undirected graph G=(V,E)
with non-negative edge weights, find a
minimum-weight, connected, spanning
subgraph of G.

• Note: Such a subgraph must be a spanning
tree!

• Frequently, we refer to the edge weights as
costs and so this problem becomes:

• Given an undirected graph G with edge costs,
compute a minimum-cost spanning tree of G.

24

Minimum-Cost Spanning Trees

25

Minimum-Cost Spanning Trees

26

Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?

27

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
schedule (coloring)

Why does this work?

28

The Key

Def: Sets V1 and V2 form a partition of a set V if

V1∪V2 = V and V1∩V2 = ∅
Lemma: Let G=(V,E) be a connected graph and
let V1 and V2 be a partition of V. Every MCST of
G contains a cheapest edge between V1 and V2

• Let e be a cheapest edge between V1 and V2

• Let T be a MCST of G. If e ∉ T, then T∪ {e}
contains a cycle C and e is an edge of C

• Some other edge e’ of C must also be between V1

and V2; e is a cheapest edge, so w(e’) = w(e) [Why?]

