
CSCI 136
Data Structures &

Advanced Programming

Lecture 29
Fall 2018

Instructors: Bill J Bill L
Bill L Bill J

2

Last Time

• Recursive Depth-First Search
• Tips on writing recursive methods

• Graph Data Structures: Implementation
• Graph Interface

3

Today�s Outline

• Graph Data Structures: Implementation
• Adjacency Array Implementation
• Adjacency List Implementation

• Featuring many Iterators!

4

Recall: Desired Functionality

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?
• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

5

Graphs in structure5

• We want to store information at vertices and at
edges, but we favor vertices
• Let V and E represent the types of information held

by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex type

• Type E holds a label for an (available) edge type
• Label: Application-specific data for a vertex/edge

6

Graphs in structure5

• The methods described in the Structure
interface deal with vertices
• but also impact edges: e.g., clear()

• We’ll want to add a number of similar
methods to provide information about edges,
and the graph itself

7

Graph Interface Methods
• void add(V vLabel)

• V remove(V vLabel)

• Add/remove vertex to graph

• void addEdge(V vLabel1, V vLabel2, E edgeLabel),

E removeEdge(V vLabel1, V vLabel2)

• Add/remove edge between vLabel1 and vLabel2

• boolean containsEdge(V vLabel1, V vLabel2)
• Returns true iff there is an edge between vLabel1 and vLabel2

• Edge<V,E> getEdge(V vLabel1, V vLabel2)
• Returns edge between vLabel1 and vLabel2

• void clear()

• Remove all nodes (and edges) from graph

8

Graph Interface Methods
• boolean visit(V vLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”
• boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)

• Returns true iff vertex/edge has been visited
• Iterator<V> neighbors(V vLabel)

• Get iterator for all neighbors of vLabel
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

9

Edge Class

• Graph edges are defined in their own public class
• Edge<V,E>(V vLabel1, V vLabel2,

E label, boolean directed)
• Construct a (possibly directed) edge between two labeled

vertices (vLabel1 à vLabel2)

• vLabel1 : here; vLabel2 : there

• Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

13

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

14

Recursive Depth-First Search
int DFS(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))

count += DFS(g, next);
}

}
return count;

}

15

Representing Graphs
• Two standard approaches

• Option 1: Array-based (directed and undirected)
• Option 2: List-based (directed and undirected)

• We’ll look at both
• Array-based graphs store the edge information in a 2-

dimensional array indexed by the vertices
• List-based graphs store the edge information in a (1-

dimensional) array of lists
• The array is indexed by the vertices

• Each array element is a list of edges incident with that vertex

16

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
E.G.: edges(B,C) = 1 but edges(C,B) = 0

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

17

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

18

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

19

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given
vertex

20

Graph Classes in structure5

21

Graph Classes in structure5

Why so many?!

• There are two types of graphs: undirected & directed

• There are two implementations: arrays and lists

• We want to be able to avoid large amounts of identical

code in multiple classes

• We abstract out features of implementation common to

both directed and undirected graphs

We’ll tackle array-based graphs first....

22

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
E.G.: edges(B,C) = 1 but edges(C,B) = 0

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

23

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

24

Adjacency Array: Undirected Graph

0 1 2 3 4 5 6

0 0 1 1 0 0 0 1

1 1 0 1 1 0 0 1

2 1 1 0 1 0 1 0

3 0 1 1 0 1 1 0

4 0 0 0 1 0 0 0

5 0 0 1 1 0 0 1

6 1 1 0 0 0 1 0

0 1 2 3 4 5 6

0 0 1 1 0 0 0 1

1 0 1 1 0 0 1

2 0 1 0 1 0

3 0 1 1 0

4 0 0 0

5 0 1

6 0

0 1 2 3 4 5 6 7 8 9 …

0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

Halving the Space (not in structure5)

(i,j) maps to 7" + $ − &(&())
+

25

Vertex and GraphMatrixVertex
• We need to define a Vertex class

• Unlike the Edge class, Vertex class is not public
• Useful Vertex methods:

V label(), boolean visit(),
boolean isVisited(), void reset()

• GraphMatrixVertex class adds one more useful attribute to
Vertex class
• Index of node (int) in adjacency matrix

int index()
• Why do we only need one int to represent index?

• In these slides, we write GMV for GraphMatrixVertex

26

Choosing a Dictionary Structure
• We need a structure that will let us retrieve the index

of a vertex given the vertex label (a dictionary)
• Many choices
• Vector of associations:

• Vector<Association<V, GraphMatrixVertex<V>>>

• Ordered Vector of Associations
• BinarySearchTree of Associations

• Problem: We don’t want to allow multiple vertices
with same label.... [Why?]

• We’ll use the Map Interface [Chapter 15]
• Maps require a unique key for each entry

27

Digression : Map Interface

• Methods for Map<K, VAL>
• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(VAL val) - true iff val exists at least

once in map
• VAL get(K key) - get value associated with key
• VAL put(K key, VAL val) - insert mapping from key to val,

returns value replaced (old value) or null
• VAL remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map

• We’ll study this more in a week or so....

28

Implementing the Matrix Model

• Abstract class – partially implements Graph
public abstract class GraphMatrix<V,E> implements Graph<V,E>

• This class will implement features common to
directed and undirected graphs

• Instance variables
protected int size; //max size of matrix
protected Object data[][]; //matrix of edges
protected Map<V, GMV<V>> dict; //labels -> vertices
// This is structure5.Map, NOT java.util.Map!
protected List<Integer> freeList; //avail indices
protected boolean directed;

29

GraphMatrix Constructor
(Yes, abstract classes can have constructors!)

protected GraphMatrix(int size, boolean dir) {
this.size = size; // set maximum size
directed = dir; // fix direction of edges

// the following constructs a size x size matrix
// (the “Objects” will be “Edges”)
// (can’t use generics with arrays!)
data = new Object[size][size];

// labelàindex translation table
dict = new Hashtable<V,GraphMatrixVertex<V>>(size);

// put all indices in the free list
freeList = new SinglyLinkedList<Integer>();
for (int row = size-1; row >= 0; row--)

freeList.add(new Integer(row));
}

30

GraphMatrix add()
public void add(V label) {

// if there already, do nothing
if (dict.containsKey(label)) return;

Assert.pre(!freeList.isEmpty(), "Matrix not full");
// allocate a free row and column
int row = freeList.removeFirst().intValue();
// add vertex to dictionary
dict.put(label, new GraphMatrixVertex<V>(label, row));

}

31

GraphMatrix remove()
public V remove(V label) {

// find and extract vertex
GraphMatrixVertex<V> vert;
vert = dict.remove(label);
if (vert == null) return null;
// remove vertex from matrix
int index = vert.index();
// clear row and column entries
for (int row=0; row<size; row++) {

data[row][index] = null;
data[index][row] = null;

}
// add node index to free list
freeList.add(new Integer(index));
return vert.label();

}

32

Neighbors Iterator : GraphMatrix

neighbors Iterator
public Iterator<V> neighbors(V label) {

GraphMatrixVertex<V> vert = dict.get(label);
List<V> list = new SinglyLinkedList<V>();
for (int row=size-1; row>=0; row--) {

Edge<V,E> e = (Edge<V,E>)data[vert.index()][row];
if (e != null)

if (e.here().equals(vert.label()))
list.add(e.there());
else list.add(e.here());

}
return list.iterator();

}

