CSCI 136 Data Structures & Advanced Programming

Lecture 26

Fall 2018

Instructors: Bill<<1

Administrative Details

- Lab 9: Super Lexicon is online
 - Partners are permitted this week!

Last Time

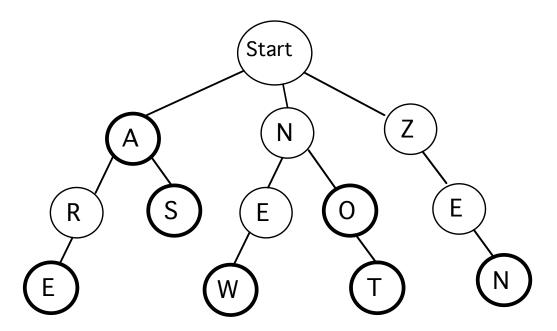
- Efficient Binary search trees (Ch 14)
 - AVL Trees
 - Height is O(log n), so all operations are O(log n)
 - Red-Black Trees
 - Different height-balancing idea: height is O(log n)
 - All operations are O(log n)

Today's Outline

- Lab 9: Super Lexicon
- Introduction To Graphs
 - Basic Definitions and Properties
 - Applications and Problems

Lab 9: Lexicon

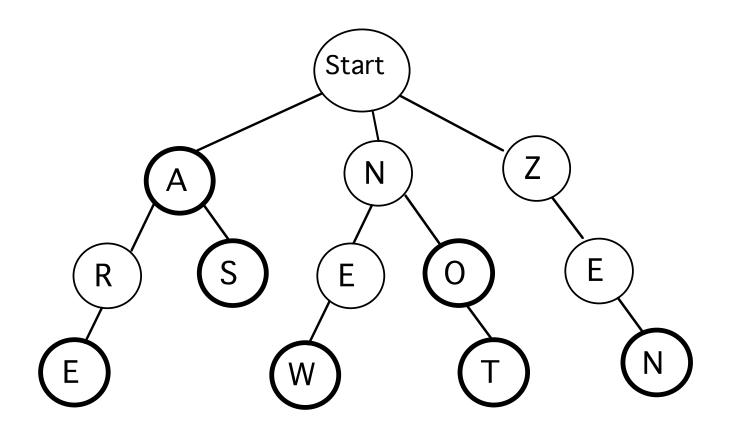
- Goal: Build a data structure that can efficiently store and search a large set of words
- A special kind of tree called a trie



Lab 9: Tries

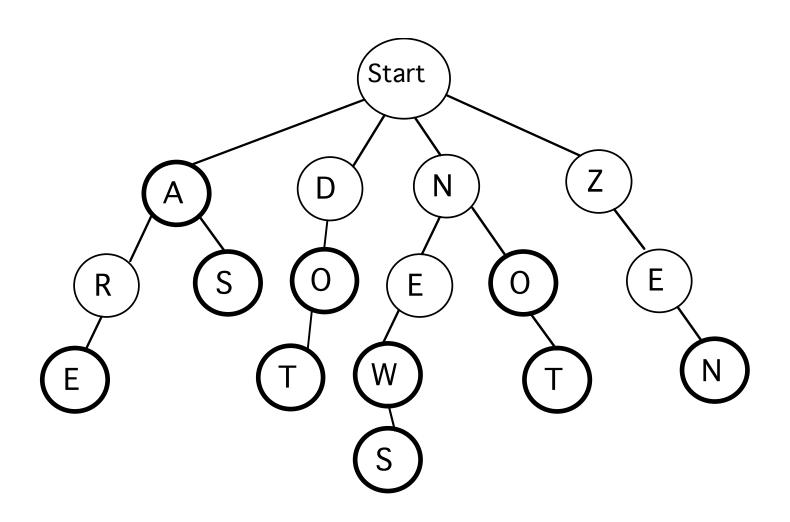
- A trie is a tree that stores words where
 - Each node holds a letter
 - Some nodes are "word" nodes (dark circles)
 - Any path from the root to a word node describes one of the stored words
 - All paths from the root form prefixes of stored words (a word is considered a prefix of itself)

Tries



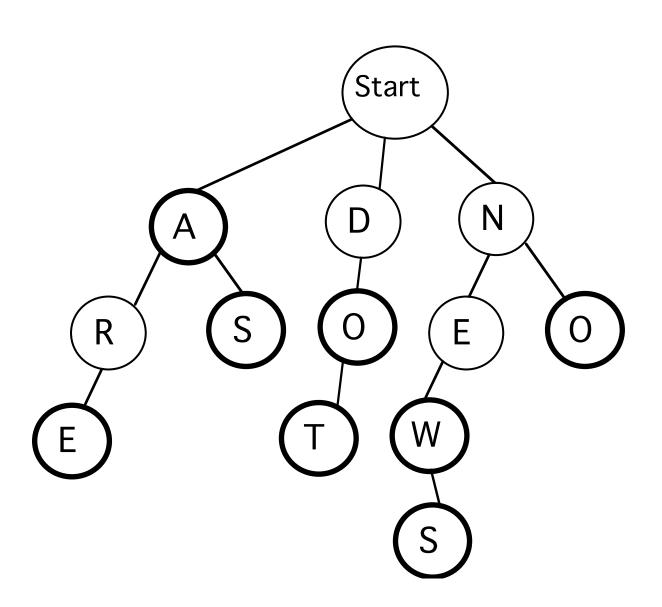
Now add "dot" and "news"

Tries



Now remove "not" and "zen"

Tries



Lab 9: Lexicon

An inteface that provides the methods

```
public interface Lexicon {
    public boolean addWord(String word);
    public int addWordsFromFile(String filename);
    public boolean removeWord(String word);
    public int numWords();
    public boolean containsWord(String word);
    public boolean containsPrefix(String prefix);
    public Iterator<String> iterator();
    public Set<String> suggestCorrections(String
            target, int maxDistance);
    public Set<String> matchRegex(String pattern);
```

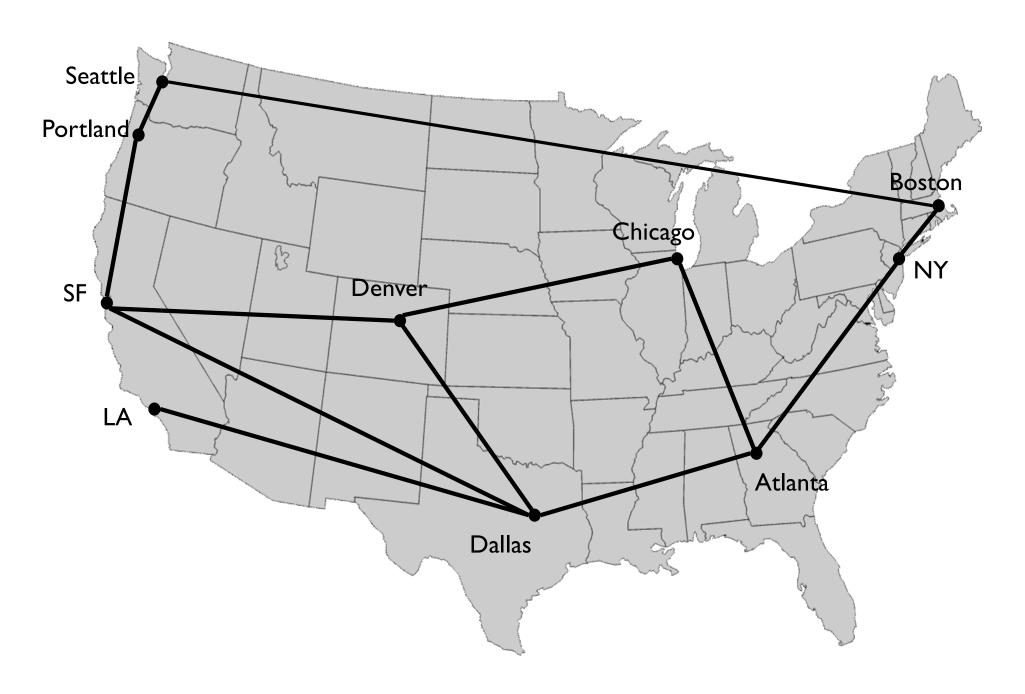
Lab 9

- Implement a program that creates, updates, and searches a Lexicon
 - Based on a LexiconTrie class
 - Each node of the Trie is a LexiconNode
 - Analogous to a SLL consisting of SLLNodes
 - LexiconTrie implements the Lexicon Interface
 - Supports
 - adding/removing words
 - searching for words and prefixes
 - reading words from files
 - Iterating over all words

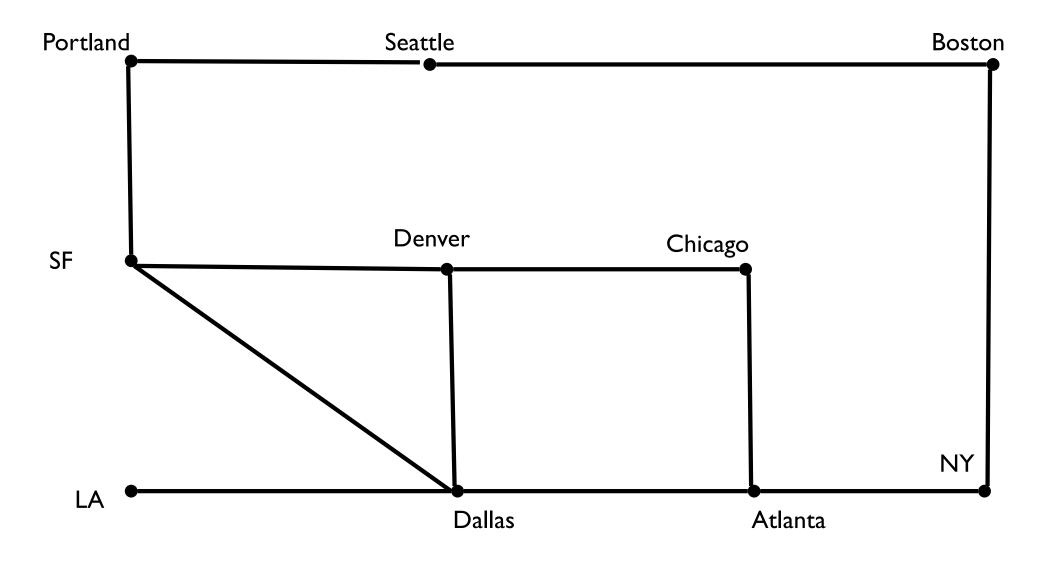
Graphs Describe the World¹

- Transportation Networks
- Communication Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling
- •

Nodes = subway stops; Edges = track between stops

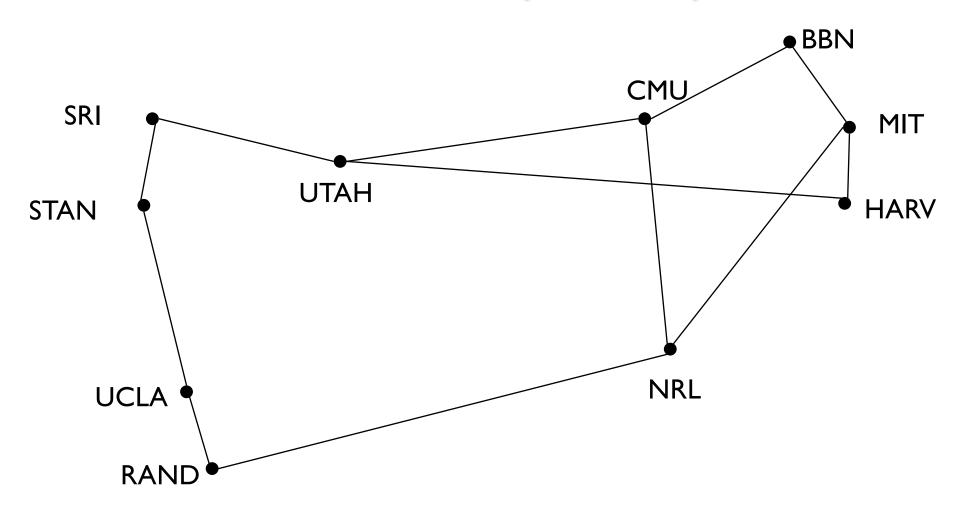


Nodes = cities; Edges = rail lines connecting cities

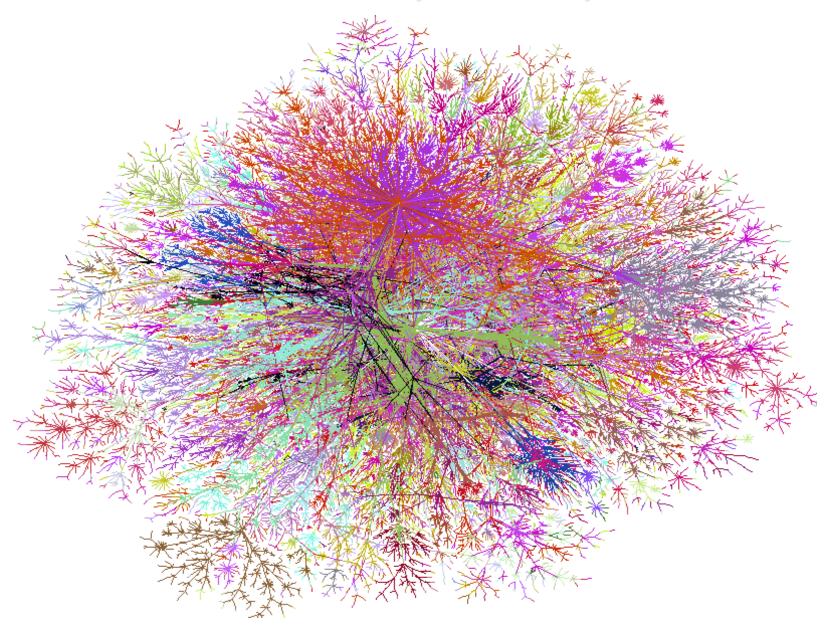


Note: Connections in graph matter, not precise locations of nodes

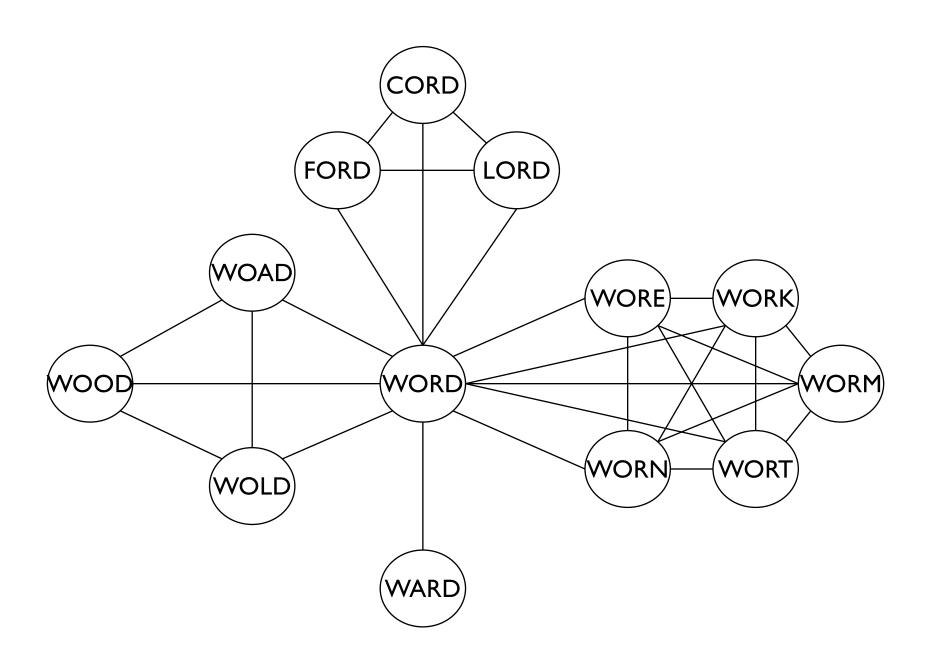
Internet (~1972)



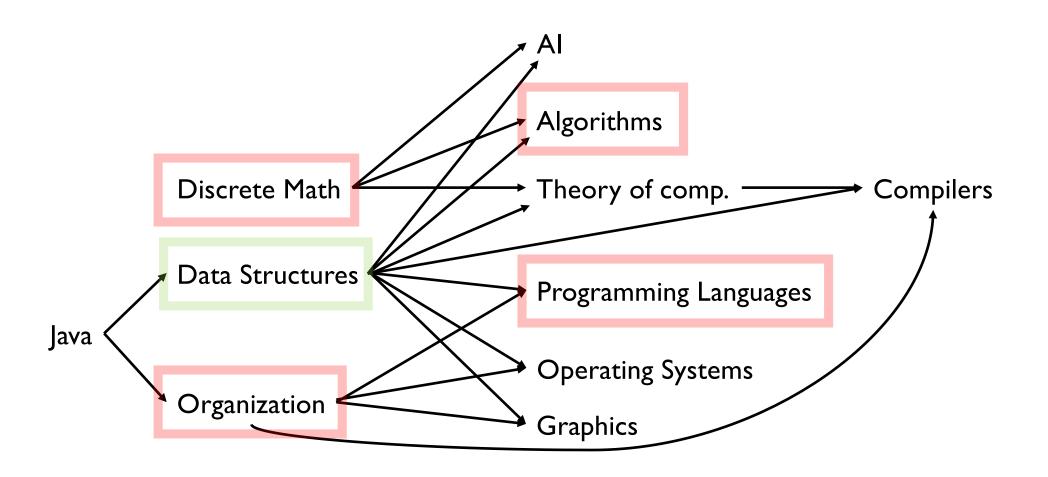
Internet (~1998)



Word Game

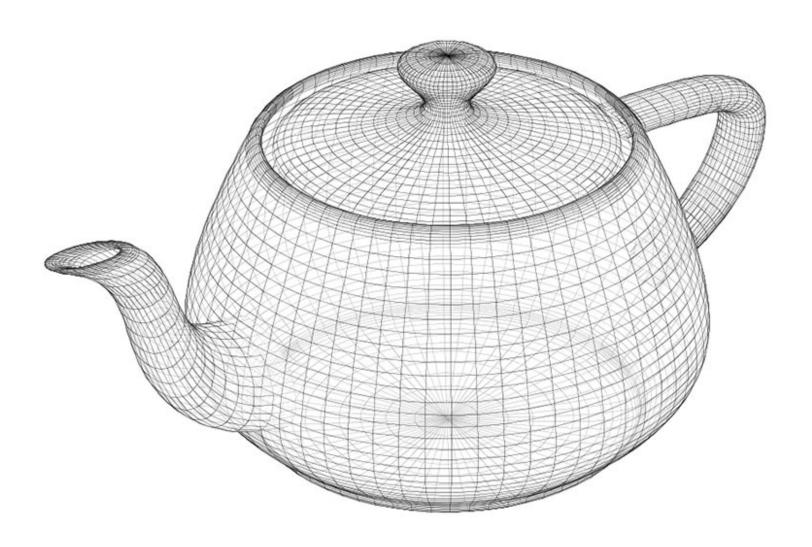


CS Pre-requisite Structure (subset)

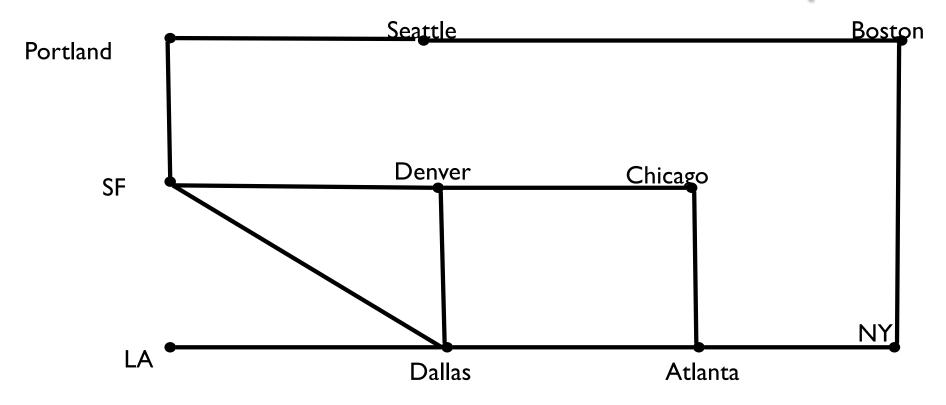


Nodes = courses; Edges = prerequisites ***

Wire-Frame Models



Basic Definitions & Concepts



Def'n: An undirected graph G = (V,E) consists of two sets

- •V : the vertices of G, and E : the edges of G
- •Each edge e in E is defined by a set of two vertices: its incident vertices. We write $e = \{u,v\}$ and say that u and v are adjacent.

Walking Along a Graph

 A walk from u to v in a graph G = (V,E) is an alternating sequence of vertices and edges

$$u = v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, v_k = v$$

such that each $e_i = \{v_i, v_{i+1}\}$ for $i = 1, ..., k$

- Note a walk starts and ends on a vertex
- If no edge appears more than once then the walk is called a path
- If no vertex appears more than once then the walk is a simple path

Walking In Circles

- A closed walk in a graph G = (V,E) is a walk $v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, v_k$ such that each $v_0 = v_k$
- A circuit is a path where v₀ = v_k
 No repeated edges
- A cycle is a simple path where v₀ = v_k
 No repeated vertices (uhm, except for v₀!)
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v! [Try to find an example!]

Another Useful Graph Fact

- Degree of a vertex v
 - Number of edges incident to v
 - Denoted by deg(v)
- Thm: For any graph G = (V, E)

$$\sum_{v \in V} \deg(v) = 2 |E|$$

where |E| is the number of edges in G

- Proof Hint: Induction on |E|: How does removing an edge change the equation?
 - Or: Count pairs (v,e) where v is incident with e

Reachability and Connectedness

- Def'n: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Def'n: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the *connected component of v*