CSCI 136
Data Structures &
Advanced Programming

Lecture 26
Fall 2018

Instructors: Bill<<|

Administrative Details

e Lab 9: Super Lexicon is online

* Partners are permitted this week!

Last Time

* Efficient Binary search trees (Ch 14)

 AVL Trees
e Height is O(log n), so all operations are O(log n)
e Red-Black Trees
e Different height-balancing idea: height is O(log n)
* All operations are O(log n)

Today s Outline

e Lab 9: Super Lexicon

* Introduction To Graphs
* Basic Definitions and Properties

* Applications and Problems

Lab 9 : Lexicon

e Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie

&
R

: eﬂe QG @%@

Lab 9 : Tries

e A trie is a tree that stores words where

* Each node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

e All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

&
olOMO

SR

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

Lab 9 : Lexicon

An inteface that provides the methods

public interface Lexicon {

public
public
public
public
public
public
public
public

public

boolean addWord(String word);

int addWordsFromFile(String filename);
boolean removeWord(String word) ;

int numWords () ;

boolean containsWord(String word);
boolean containsPrefix(String prefix);
Iterator<String> iterator();
Set<String> suggestCorrections(String
target, int maxDistance);

Set<String> matchRegex(String pattern);

Lab 9

* Implement a program that creates, updates,
and searches a Lexicon

e Based on a LexiconTrie class
* Each node of the Trie is a LexiconNode
* Analogous to a SLL consisting of SLLNodes

* LexiconTrie implements the Lexicon Interface

e Supports
e adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words

Graphs Describe the World!

* Transportation Networks
e Communication Networks
* Molecular structures

* Dependency structures

* Scheduling

* Matching

e Graphics Modeling

'But don’t tell Tom Garrity---he’ll just be sad....

The Bronx —

pa—-
s
H s
Rive
Pl e m
. S
1 e C— .
s s s e
ot P)
s s s -
s o

Wi Manhattan

. P
na s
& o) _ o
. asl
ot oty B T
s sus
- P s
sl
: o unansa
sy

New York Harbor

s
A
. City S i
-
. A New York City Subway Diagram
o o
i) Stations and connections Subway Services
e s o
i e e = oo
H Woekdays only e 7 Avenue Express.
i e —
i rush hours only e Lexington Avenue Express
nights and weekends only & Lexington Avenue Express
o ki Cetton Avence oo
o reaularservice @ 42 Street-Flushing Local
N rnstor E 8 Avenue Expross
S hvense Lo
" out-of-station transfor 8 Avenue Local
e = 6 Avenvo Expross
—_-— gt
i whoelchak access 6 Avenue Local
E & vene Loca
Main 81 ©® Crosstown Local
Mt et Port 8 Nassau Street Local
-y e Nassau Stroot Expross.
i © 14 oot onarsio Loca
N Broadway Expres:
Q Broadway Express
Queens AN R Broadway Loca
Y R Sy oo
a2 © shuttle
PO~y 3 et Towig SR Staten Island Railway
L oo . 4
¥ Nowom "o regopuk G1h ERM g s Pasornivg
o —— 7 = ety -
ot e e
o Vg S St Bc-JPK Arpor 1

ity
Y ot

vt Gaos ke
Mot Conot v)
N e W —
T
ey o s Ny Lomer 81 Priog e & Brosdeey L
’ , (A -
L e o Coeo e Chancey o ‘
Wiy Rockawey A
et e or 310
(A——
.I-wm.».
o oo Foamosare Ln.... Jamaica Bay
o gl MRt vy
Ao
4
st st
St
e st
A
R)
Liodomed

Atlantic Ocean

s = subway stops; Edges = track between stops

13

Seattleé_

BOS 1 N

_ Dallas >

Nodes = cities; Edges = rail lines connecting cities

- .--.Av—m"- j.r - N
. i \
ekt et e e il ‘
‘: A, - '{ ey
Portland \
‘. ,"‘." I\ v e, N uaent - .'/
) T Wl 7/ v
MY . /
' /A 21 4
" 4 ‘

Portland Seattle Boston

r . r
SF Denver Ch|cago
* 'f
NY
LA ® ‘ ®
Dallas Atlanta

Note: Connections in graph matter, not precise locations of nodes
I5

SRI

STAN

UCLA

Internet (~1972)

Internet (~199

|7

Word Game

CORD

o) —{ore
pm

WORD W
WOLD Wﬁ&
@

CS Pre-requisite Structure (subset)

Al

Algorithms

pd

> Theory of comp.

Discrete Math Compilers

Data Structures

Programming Languages

Java
Operating Systems

Organization

— Graphics

Nodes = courses; Edges = prerequisites ***

Wire-Frame Models

> =
=
i s
S22 : =
= S5
: 4
= : \ B
- v .
: 3
- ~
\-. ~ : e > -
> =
<) Lt I
.

o % ;
s et <

——
. - =~

7 S, £
\s- . > :
- |
X 1 .
o, o e

—_-__—x;:zi‘“""'"f
— =

20

Basic Definitions & Concepts

Seq;ﬂg BQ§§pn
Portland f
SF Denver Chicaﬁo
LA @ ‘ NY.
Dallas Atlanta

Def’n: An undirected graph G = (V,E) consists of two sets
*V :the vertices of G, and E : the edges of G

*Each edge e in E is defined by a set of two vertices: its incident
vertices. Ve write e = {u,v} and say that u and v are adjacent.

21

Walking Along a Graph

A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

U=V €, V|, € Vyy ee.s Vi.]» €6 VK — V

such that each e, = {v,, v, }fori=1, .., k
Note a walk starts and ends on a vertex

If no edge appears more than once then
the walk is called a path

If no vertex appears more than once then
the walk is a simple path

22

Walking In Circles

* A closed walk in a graph G = (V,E) is a walk
VO’ el, VI, e2, V2, ece 9 Vk_l, ek, Vk
such that each vy = v,

* A circuit is a path where vy = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence

23

Little Tiny Theorems

If there is a walk from u to v, then there is a
walk from v to u.

If there is a walk from u to v, then there is a
path from u to v (and from v to u)

If there is a path from u to v, then there is a
simple path from u to v (and v to u)

Every circuit through v contains a cycle
through v

Not every closed walk through v contains a
cycle through v! [Try to find an example!]

24

Another Useful Graph Fact

* Degree of a vertex v
* Number of edges incident to v
* Denoted by deg(v)

 Thm: For any graph G = (V,E)

) deg(v)=2IE|

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e

25

Reachability and Connectedness

Defn: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Def'n: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and vice versa)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

26

