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Administrative Details

e Lab 9: Super Lexicon is online

* Partners are permitted this week!



Last Time

* Efficient Binary search trees (Ch 14)

 AVL Trees
e Height is O(log n), so all operations are O(log n)
e Red-Black Trees
e Different height-balancing idea: height is O(log n)
* All operations are O(log n)



Today s Outline

e Lab 9: Super Lexicon

* Introduction To Graphs
* Basic Definitions and Properties

* Applications and Problems



Lab 9 : Lexicon

e Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie
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Lab 9 : Tries

e A trie is a tree that stores words where

* Each node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

e All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)



Tries
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Now add “dot” and “news”



Now remove “not” and “zen”



Tries



Lab 9 : Lexicon

An inteface that provides the methods

public interface Lexicon {

public
public
public
public
public
public
public
public

public

boolean addWord(String word);

int addWordsFromFile(String filename);
boolean removeWord(String word) ;

int numWords () ;

boolean containsWord(String word);
boolean containsPrefix(String prefix);
Iterator<String> iterator();
Set<String> suggestCorrections(String
target, int maxDistance);

Set<String> matchRegex(String pattern);



Lab 9

* Implement a program that creates, updates,
and searches a Lexicon

e Based on a LexiconTrie class
* Each node of the Trie is a LexiconNode
* Analogous to a SLL consisting of SLLNodes

* LexiconTrie implements the Lexicon Interface

e Supports
e adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words



Graphs Describe the World!

* Transportation Networks
e Communication Networks
* Molecular structures

* Dependency structures

* Scheduling

* Matching

e Graphics Modeling

'But don’t tell Tom Garrity---he’ll just be sad....
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s = subway stops; Edges = track between stops
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Note: Connections in graph matter, not precise locations of nodes
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Word Game
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CS Pre-requisite Structure (subset)

Al

Algorithms

pd

> Theory of comp.

Discrete Math Compilers

Data Structures

Programming Languages

Java
Operating Systems

Organization

— Graphics

Nodes = courses; Edges = prerequisites ***



Wire-Frame Models

> =
=
i s
S22 : =
= S5
: 4
= : \ B
- v .
: 3
- ~
\-. ~ : e > -
> =
<) Lt I
.

o % ;
s et <

——
. - =~

7 S, £
\s- . > :
- |
X 1 .
o, o e

—_-__—x;:zi‘“""'"f
— =

20



Basic Definitions & Concepts
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Def’n: An undirected graph G = (V,E) consists of two sets
*V :the vertices of G, and E : the edges of G

*Each edge e in E is defined by a set of two vertices: its incident
vertices. Ve write e = {u,v} and say that u and v are adjacent.
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Walking Along a Graph

A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

U=V €, V|, € Vyy ee.s Vi.]» €6 VK — V

such that each e, = {v,, v, }fori=1, .., k
Note a walk starts and ends on a vertex

If no edge appears more than once then
the walk is called a path

If no vertex appears more than once then
the walk is a simple path
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Walking In Circles

* A closed walk in a graph G = (V,E) is a walk
VO’ el, VI, e2, V2, ece 9 Vk_l, ek, Vk
such that each vy = v,

* A circuit is a path where vy = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence
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Little Tiny Theorems

If there is a walk from u to v, then there is a
walk from v to u.

If there is a walk from u to v, then there is a
path from u to v (and from v to u)

If there is a path from u to v, then there is a
simple path from u to v (and v to u)

Every circuit through v contains a cycle
through v

Not every closed walk through v contains a
cycle through v! [Try to find an example!]
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Another Useful Graph Fact

* Degree of a vertex v
* Number of edges incident to v
* Denoted by deg(v)

 Thm: For any graph G = (V,E)

) deg(v)=2IE|

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e
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Reachability and Connectedness

Defn: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Def'n: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and vice versa)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v
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