
CSCI 136
Data Structures &

Advanced Programming

Lecture 24
Fall 2018

Instructor: Bills

2

Administrative Details

• Lab 8 today!
• You can work with a partner
• Bring a design to lab

• Try to take advantage of
• Abstract base classes/inheritance
• Data structures you’ve learned

2

3

Last Time

• Heapifying an array
• Top-Down vs Bottom-up

• Heapsort

• Skew Heaps: A Mergeable Heap Structure

4

Today�s Outline

• Lab 8
• Binary search trees (Ch 14)
• Overview
• Definition
• Some Applications

• The locate method
• Further Implementation

5

Improving on OrderedVector

• The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects
• add() and remove(), though, take O(n) time in the

worst case---and on average!

• Can we improve on those running times
without sacrificing the O(log n) search time?

• Let’s find out....

6

Binary Trees and Orders

• Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are ≤ v
• All values in right subtree of v are ≥ v

• This leads us to...

7

Binary Search Trees

• Binary search trees maintain a total ordering
among elements (assumes comparability)

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs

8

BST Observations

• The same data can be represented by many
BST shapes

• Searching for a value in a BST takes time
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at
least one child (a constraint!)

• Removing from a BST can involve any node

9

BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)
• Runtime of above operations?

• All O(h) – where h is the tree height
• iterator()

• This will provide an in-order traversal

10

BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• Other creates a NaturalComparato

11

BST Implementation: locate

• Several methods search the tree
• add, remove, contains

• We factor out common code: locate method

• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> n in the subtree with

root node such that either
• n has its value equal to v, or
• v is not in this subtree and n is the node whose child

v should be

• How would we implement locate()?

12

BST Implementation: locate

BinaryTree locate(BinaryTree root, E value)
if root’s value equals value return root
child ç child of root that should hold value
if child is emptry tree, return root

// value not in subtree based at root
else //keep looking

return locate(child, value)

13

BST Implementation: locate

• What about this line?
child ç child of root that should hold value

• If the tree can have multiple nodes with
same value, then we need to be careful

• Convention: During add operation, only
move to right subtree if value to be added is
greater than value at node

• We’ll look at add later

• Let’s look at locate now....

14

The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}

15

Other core BST methods

• locate(v) returns either a node containing v or a
node where v can be added as a child

• locate() is used by
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...

16

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}

17

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++;

}

Problem: If repeated values are allowed, left subtree might
not be empty when setLeft is called

18

Add: Repeated Nodes

