
CSCI 136
Data Structures &

Advanced Programming

Lecture 23
Fall 2018

Instructor: Bills

Administrative Details

• Lab 8: Simulations
• You will simulate two queuing strategies
• You can work with a partner
• Time spent on lab before Wed. is time well-spent!

• Problem Set 3 is online
• Due this Friday at beginning of class

2

Last Time

Improving Huffman’s Algorithm
• Priority Queues & Heaps
• A “somewhat-ordered” data structure

• Conceptual structure
• Efficient implementations

3

Today

• Finishing up with heaps
• HeapSort
• Alternative Heap Structures

• Binary Search Tree: A New Ordered Structure
• Definitions
• Implementation

4

Recap: Implementing Heaps

• Features
• Represent as a full binary tree stored in an array

• We always add in next available array slot (left-most available spot
in binary tree (see percolate method)

• We always remove using “final” leaf (see pushDown method)

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

• When elements are added and removed, do small amount
of work to “re-heapify”
• Finding a node’s child or parent takes constant time, as does

finding “final” leaf or next slot for adding
• Since this heap corresponds to a full binary tree, the depth of the

tree is O(log n), so percolate/pushDown takes O(log n) time!

Heapifying A Vector (or array)

• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolate on item in location k+1
• Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1
• Then V[k-1..n] satisfies heap property

• Check out the demos at visualgo.net

https://visualgo.net/en/heap

Top-Down vs Bottom-Up

!
"#$

%
&2" = ℎ − 1 2%,- + 2 = log 2 − 1 22 + 2

• This is O(n log n)
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
might have to move to root: O(log n) swaps
per element

• Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

!
"#$

%
(ℎ −))2" = 2%-. − ℎ − 2 = 2/ − log / + 2

• This is O(n) --- beats top-down!
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!!

Some Sums

All of these can be
proven by (weak)
induction.

Try these to hone
your skills

The second sum is
called a geometric
series. It works for
any r≠1

!
"#$

"#%
& ∗ 2" = * − 1 ∗ 2%-. + 2

!
"#$

"#%
* − & ∗ 2" = 2%-. − * − 2

!
"#$

"#%
2" = 2%-. − 1

!
"#$

"#%
0" = ⁄(0%-.−1) (0 − 1)

HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse

ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort

Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Works well on mostly sorted data, unlike
quicksort

• Good for incremental sorting

More on Heaps

• Set-up: We want to build a large heap. We
have several processors available.

• We’d like to use them to build smaller heaps
and then merge them together

• Suppose we can share the array holding the
elements among the processors.
• How long to merge two heaps?
• How complicated is it?

• What if we use BinaryTrees for our heaps?

Mergeable Heaps

• We now want to support the additional
destructive operation merge(heap1, heap2)

• Basic idea: heap with larger root somehow
points into heap with smaller root

• Challenges
• Points how? Where?
• How much reheapifying is needed
• How deep do trees get after many merges?

Skew Heap

• Don’t force heaps to be complete BTs?
• Develop recursive merge algorithm that keeps

tree shallow over time
• Theorem: Any set of m SkewHeap operations

can be performed in O(m log n) time, where n
is the total number of items in the SkewHeaps

• Let’s sketch out merge operation....

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)
if either S or T is empty, return the other
if T.minValue < S.minValue

swap S and T (S now has minValue)
if S has no left subtree, T becomes its left subtree
else

let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, T) becomes left subtree of S

return S

Tree Summary

• Trees
• Express hierarchical relationships
• Tree structure captures relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority

• Node invariants: parent has higher priority than
each child

• Provides efficient PriorityQueue implementation

