CSCI 136
Data Structures &
Advanced Programming

Lecture 23
Fall 2018

Instructor: Bills

Administrative Details

e Lab 8: Simulations

* You will simulate two queuing strategies

* You can work with a partner

* Time spent on lab before Wed. is time well-spent!
* Problem Set 3 is online

* Due this Friday at beginning of class

Last Time

Improving Huffman’s Algorithm
* Priority Queues & Heaps

* A “somewhat-ordered” data structure
e Conceptual structure
e Efficient implementations

Today

* Finishing up with heaps
* HeapSort
* Alternative Heap Structures

e Binary Search Tree: A New Ordered Structure
* Definitions
* Implementation

Recap: Implementing Heaps

* Features

e Represent as a full binary tree stored in an array
* We always add in next available array slot (left-most available spot
in binary tree (see percolate method)
* We always remove using “final”’ leaf (see pushDown method)

* Heap Invariant becomes
e datafi] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

* When elements are added and removed, do small amount

of work to “re-heapify”
* Finding a node’s child or parent takes constant time, as does
finding “final” leaf or next slot for adding

 Since this heap corresponds to a full binary tree, the depth of the
tree is O(log n), so percolate/pushDown takes O(log n) time!

Heapifying A Vector (or array)

* Method |: Top-Down
e Assume V[0...k] satisfies the heap property
* Now call percolate on item in location k+|

* Then V[0..k+1] satisfies the heap property

 Method ll: Bottom-up
e Assume V[k..n] satisfies the heap property

* Now call pushDown on item in location k-1

* Then V[k-I..n] satisfies heap property
e Check out the demos at visualgo.net

https://visualgo.net/en/heap

Top-Down vs Bottom-Up

* Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

h
z d2% = (h—1)2"*1 + 2 = (logn — 1)2n + 2
d=0

* This is O(n log n)
e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them

might have to move to root: O(log n) swaps
per element

Top-Down vs Bottom-Up

* Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

h
2 (h—d)2¢ = 20+1 — h — 2 = 2n — logn + 2
d=0

e This is O(n) --- beats top-down!

e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!

2.

2.
2.

d=k

d=0

d=0

d=k

d=0

Some Sums

Zd — 2k+1 —1

rd = (@*1-1)/(r-1)

d*2%9=(k—1)*2k1 42

(k—d) 2% = 2kt | —2

All of these can be
proven by (weak)
iInduction.

Try these to hone
your skKills

The second sum is
called a geometric
series. It works for
any r#1

HeapSort

Heaps yield another O(n log n) sort method

To HeapSort a Vector “in place”

* Perform bottom-up heapify on the reverse
ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

* Now repeatedly remove elements to fill in Vector
from tail to head
e For(inti = v.size() - I;i>0; i--)
— RemoveMin from v[O0..i] // v[i] is now not in heap

— Put removed value in location v[i]

Time (ms)

2500

2000

1500

1000

500

Heap Sort vs QuickSort

~—O0— Heap Sort
—l— Quick Sort

200000 400000 600000 800000 1000000
Size

1200000

Why Heapsort!?

Heapsort is slower than Quicksort in general

Any benefits to heapsort?

* Guaranteed O(n log n) runtime

Works well on mostly sorted data, unlike
quicksort

Good for incremental sorting

More on Heaps

Set-up: We want to build a large heap. We
have several processors available.

We'd like to use them to build smaller heaps
and then merge them together

Suppose we can share the array holding the
elements among the processors.
* How long to merge two heaps!

* How complicated is it!

What if we use BinaryTrees for our heaps!?

Mergeable Heaps

* We now want to support the additional
destructive operation merge(heapl, heap2)

* Basic idea: heap with larger root somehow
points into heap with smaller root

e Challenges
* Points how? Where!
* How much reheapifying is needed

* How deep do trees get after many merges?

Skew Heap

Don’t force heaps to be complete BTs?

Develop recursive merge algorithm that keeps
tree shallow over time

Theorem: Any set of m SkewHeap operations
can be performed in O(m log n) time, where n
is the total number of items in the SkewHeaps

Let’s sketch out merge operation....

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, Skewleap T)
if either S or 1'is empty, return the other
if 1:minValue <S.minValue
swap Sand T (S now has minValue)
IS has no left subtree, T becomes its left subtree
else
let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, 1) becomes left subtree of S

return S

Tree Summary

* Trees
* Express hierarchical relationships

* Tree structure captures relationship

* i.e,, ancestry, game boards, decisions, etc.
* Heap
* Partially ordered tree based on item priority

* Node invariants: parent has higher priority than
each child

* Provides efficient PriorityQueue implementation

