
CSCI 136
Data Structures &

Advanced Programming

Lecture 21
Fall 2018

Instructor: Bills

Administrative Details

• Lab 7 today!
• No partners this week
• Review before lab; come to lab with design doc

• Read over the supplied resources!

2

Last Time

• Binary Trees
• Traversals

• As methods taking a BinaryTree parameter
• With Iterators

• Trees with more than 2 children
• Representations
• Application: Tries
• Breadth-First and Depth-First Search

3

Today

• Lab 7: Two Towers
• Array Representations of (Binary) Trees
• Application: Huffman Encoding

4

Lab 8: Two Towers

• Goal: given a set of blocks, iterate through all
possible subsets to find the best set

• “Best” set produces the most balanced towers
• Strategy: create an iterator that uses the bits

in a binary number to represent subsets

1 2 3 4 14 15
. . .

Lab 8: Two Towers

• A block can either be in the set or out
• If bit is a 1, in. If bit is a 0, out

1 2 3 4 14 15
. . .

0 1 1 0 1 0
1

2

3
4

14 15

Plan

• We will write a “SubsetIterator” to
enumerate all possible subsets of a Vector<E>

• We will use SubsetIterator to solve this
problem

• Can also be used to solve other problems
• Identify all Subsequences of a String that are

words

Plan
• Represent a subset of the Vector v by a bit

sequence
• If ith bit is 1, take ith element of v
• If ith bit is 0, don’t take ith element of v

• Represent this sequence as a binary number
• Stored as a long: currSet
• currSet & (I << i) is either 0 or 2i

• 2i if ith bit of currSet is 1, 0 if not

• Watch for “overflow”!
• See leftShift.java

Alternative Tree Representations

• Total # �slots� = 4n
• Since each BinaryTree

maintains a reference to
left, right, parent, value

• 2-4x more overhead than
vector, SLL, array, …

• But trees capture
successor and predecessor
relationships that other
data structures don�t…

Green

Blue Violet

Indigo Red

Orange Yellow

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2
• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of h needs 2h+1-1 array slots even if only

O(h) elements

Application: Huffman Codes
(a CS 256 Preview)

• Computers encode a text as a sequence of bits

Huffman Codes

• Goal: Encode a text as a sequence of bits
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• �A� = 01000001, �B� = 01000010
• Space to store �AN_ANTARCTIC_PENGUIN�

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??

Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Huffman Codes

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

Features of Good Encoding

• Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

• No internal node has a single child
• Nodes with lower frequency have greater

depth

• All optimal length unambiguous encodings
have these features

Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with dummy value and

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

