CSCI 136
Data Structures &
Advanced Programming

Lecture 20
Fall 2018

Instructor: Bills

Administrative Details

e Lab 7 is available online
* No partners this week
* Review before lab; come to lab with design doc

* We'll give an overview shortly

Last Time

Recursion/Induction on Trees
Applications: Decision Trees

Trees with more than 2 children
* Representations

Traversing Binary Trees
* As methods taking a BinaryTree parameter

Today

Binary Trees Traversals

* As methods taking a BinaryTree parameter
* Lever Order Traversal

* With lterators

Big Trees

Lab 7 Discussion
Storing Trees in Arrays

Mid-Term Results
* Average grade: 84.7%

Histogram of Mid-term
Exam %

8 B (count)

FPPFPPFPFPPPPPHIPP Q.Q Q'% ‘{:)% QQ .;)Q Q_)Q 9(3) Q)Q 9(} QQ <§} QQ

$ P
S eV PP @A AV AR AT AY R R P g o o o PV S

Mid-term

Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element
o Start at the other end and visit each element
* How do we traverse binary trees!?

* (At least) four reasonable mechanisms

Tree Traversals

Lucas

/ N\

Jacob Nambi

/N N

Aria Kelsie Tongyu

In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

-+
Tree Traversals ./ \7
* Pre-order 2/ \3

* Each node is visited before any children. Visit
node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

* |n-order

* Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2¥3+7

(“pseudocode™)

AN

x 7
/N
p) 3

Tree Traversals

e Post-order

e Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)

o 23%7+
* Level-order (not obviously recursive!)

* All nodes of level i are visited before nodes of
level i+1. (visit nodes left to right on each level)

o +%723

(“pseudocode™)

Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method

+
preOrder(t.left()); // \\
preOrder(t.right()); * 7

} / N\
23

For in-order and post-order: just move touch(t)!

But what about level-order???

L evel-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue Violet
/\

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue Violet ™
N

Orange Yellow

N

Indigo Red

8

GB

L evel-Order Traversal

Green

/\

Blue Violet

T
Orange Yellow

N

Indigo Red

GBYV

L evel-Order Traversal

L evel-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

Indigo Red

GBVOY

L evel-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N
Indigo

GBVOYI

L evel-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

GBVOYIR

L evel-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\
Blue Violet 1
T Green
Orange Yellow 1
/\ todo queue

Indigo Red

L evel-Order Traversal

Green 1
/\ .
Violet
Blue Violet =
/\ Blue
Orange Yellow 1
/\ todo queue
Indigo Red

L evel-Order Traversal

Green
/\
Blue 1
PNy Violet
Orange Yellow 1
/\ todo queue
Indigo Red

GB

L evel-Order Traversal

Green 1
/\
. Yellow
Blue Violet

Py Orange

Orange Yellow 1
/\ todo queue

Indigo Red

GBYV

Level-Order Traversal

Green

/\

Blue Violet

S

Orange

todo queue

GBVO

L evel-Order Traversal

Green 1
/\
Red
Blue Violet =
P Indigo
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOY

L evel-Order Traversal

Green
/\
Blue Violet l
T Red
Orange Yellow 1
/\ todo queue
Indigo

GBVOYI

L evel-Order Traversal

Green
/\
Blue Violet
T |
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOYIR

| evel-Order Tree Traversal

public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> g = new QueuelList<BinaryTree<E>>();

g.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = g.dequeue();
touch (next);
if(!'next.left().isEmpty()) g.enqueue(next.left());
if(!next.right().isEmpty()) g.enqueue(next.right());

lterators

* Provide iterators that implement the different
tree traversal algorithms

* Methods provided by BinaryTree class:
* preorderlterator()
* inorderlterator()
e postorderlterator()
* levelorderlterator()

* iterator() : calls inorderlterator()

Implementing the lterators

e Basic idea

 Should return elements in same order as
corresponding traversal method shown

* Recursive methods don’t convert as easily: must
phrase in terms of next() and hasNext()

e So, let’s start with levelOrder!

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root)

{

todo = new QueuelList<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

public void reset()

{

todo.clear();
// empty queue, add root
1f (!'root.i1skEmpty()) todo.enqueue(root);

public

}

public

Level-Order lterator

boolean hasNext() {
return !todo.isEmpty();

E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

1f (lcurrent.left().isEmpty())
todo.enqueue(current.left());

1f (lcurrent.right(Q).1isEmpty())
todo.enqueue(current.right());

return result;

Pre-Order lterator

e Basic idea

* Should return elements in same order as
processed by pre-order traversal method

* Must phrase in terms of next() and hasNext()

* We “simulate recursion’ with stack

e The stack holds “partially processed” nodes

Pre-Order lterator

e Outline: node - left tree — right tree
|. Constructor: Push root onto todo stack
2. On call to next():

* Pop node from stack

e Push right and then left nodes of popped node onto
stack

e Return node’s value

3. On call to hasNext():
e return !stack.isEmpty()

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

‘/\
@Iue Viol@ Blue

T Violet

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue
T Violet

Orange Yellow

/\ todo stack

Indigo Red

GB

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet Orange

T Yellow

Orange Yellow
/\ todo stack

Indigo Red

GBYV

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
T Indigo
Blue Violet Red
S Yellow

Yellow
todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
/\
Blue Violet Red
S Yellow

Yellow
todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

N Yellow
Orange

/\ todo stack

Indigo Red

GBVOIR

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

/\ todo stack

Indigo Red

GBVOIRY

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root)

{

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset()

{
todo.clear(); // stack i1s empty; push on root

1f ((!root.i1sEmpty()) todo.push(root);

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

1f (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().1sEmpty())
todo.push(old.left());

return result;

Tree Traversal Practice Problems

* Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct

order (Hint: induction by level)

* Prove that levelOrder() takes O(n) time,
where n is the size of the tree

* Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (LevelOrder) traversal method

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

reen

Blue Violet Blue

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

/\

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green .
Indigo
Blue Violet Orange
Violet
Yellow
todo stack

BG

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Blue Violet Orange
Violet
Orange) Yellow
/\ todo stack
Indigo Red

BGI

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
Blue Red
Violet
Yellow
todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
/\

Blue
/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

BGIOR

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T Yellow

Orange
/\ todo stack

Indigo Red

BGIORYVY

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

/\ todo stack

Indigo Red

BGIORVY

In-Order lterator

e Qutline: left - node - right
|. Push left children (as far as possible) onto stack
2. On call to next():

* Pop node from stack
* Push right child and follow left children as far as possible

e Return node’s value

3. On call to hasNext():

e return !stack.isEmpty()

Post-Order lterator

public BTPostorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();
ks
public void reset() {
todo.clear();
BinaryTree<E> current = root;
while (!current.isEmpty()) {
todo.push(current);
if (lcurrent.left().isEmpty())
current = current.left(Q);
else
current = current.right(Q);
} // Top of stack is now left-most unvisited leaf

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop(Q);
E result = current.value();
if ('todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
if (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
if (lcurrent.left().isEmpty())
current = current.left(Q);
else current = current.right(Q);

¥
¥

return result;

Tree Traversals

In summary:
* |n-order: “left, node, right”

* Pre-order: “node, left, right” — Stack

e Post-order: “left, right, node”

—_—

* |evel-order: visit all nodes at depth i before } Queue
depth i+l

Traversals & Searching

* We can use traversals for searching trees

* How might we search a tree for a value!

* Breadth-First: Explore nodes near the root before
nodes far away (level order traversal)

* Nearest gas station

* Depth-First: Explore nodes deep in the tree first
(post-order traversal)

e Solution to a maze

Loose Ends — Really Big Trees!

* |In some situations, the tree we need might be
too big or expensive to build completely

e Or parts of it might not be needed
 Example: Game Trees

* Chess: you wouldn’t build the entire tree, you
would grow portions of it as needed (with some
combination of depth/breadth first searching)

Lab 7: Representing Numbers

Humans usually think of numbers in base 10

But even though we write int x =

Recall Lab 3:

public static String printInBinary(int n)

if (n <= 1)

return "" + n%2;

return printInBinary(n/2)+n

}
00000000 00000000 00000000 000101 11

o
°

23 the
computer stores x as a sequence of 1s and Os

2;

{

Bitwise Operations

* We can use bitwise operations to manipulate
the 1s and Os in the binary representation

e Bitwise ‘and’; &
* Bitwise ‘or’: |
e Also useful: bit shifts

e Bit shift left: <<
* Bit shift right: >>

& and |

e Given two integers a and b, the bitwise or
expression a | b returns an integer s.t.

* At each bit position, the result has a 1 if that bit
position had a 1 in EITHER a OR b (or both)

3 | 6 =72
* Given two integers a and b, the bitwise and
expression a & b returns an integer s.t.

* At each bit position, the result has a 1 if that bit
position hada 1 in BOTH a AND b

*3 & 6 =7

>> and <<

* Given two integers a and 1, the expression
(a << 1) returns (a * 2%)
* Why! It shifts all bits left by 1 positions
e]1 << 4 =7
* Given two integers a and 1, the expression
(a >> i) returns (a / 2%)
* Why! It shifts all bits right by 1 positions
1 >> 4 =7

* 97 >> 3 = 7?

* Be careful about shifting left and “overflow”!!!

Revisiting printlnBinary(int n)

* How would we rewrite a recursive
printInBinary using bit shifts and bitwise

operations?

public static String printInBinary(int n) {
if (n <= 1) {
return "" + n;
return printInBinary(n >> 1) + (n & 1);

Revisiting printlnBinary(int n)

* How would we write an iterative
printInBinary using bit shifts and bitwise

operations?

public static String printInBinary(int n,
int width) {
String result = "";
for(int 1 = 0; 1 < width; i++)
if ((n & (1<<i)) == 0)
result = 0 + result;
else
result = 1 + result;

return result;

Lab 8: Two Towers

* Goal: given a set of blocks, iterate through all
possible subsets to find the best set

4 14 e

e “Best” set produces the most balanced towers

e Strategy: create an iterator that uses the bits
in a binary number to represent subsets

Lab 8: Two Towers

* A block can either be in the set or out

e If bitisa 1, in. If bitis a 0, out

1 2 3 4 14
0 1 1 0 1
1
‘2\
4
3

14 e

Questions!?

* We will write a “Subsetlterator” to
enumerate all possible subsets of a Vector<E>

* We will use Subsetlterator to solve this
problem

e Can also be used to solve other problems

* |dentify all Subsequences of a String that are
words

* You just need a dictionary of legal words
e Coming soon!

