
CSCI 136
Data Structures &

Advanced Programming

Lecture 15
Fall 2018

Instructor: Bills

Announcements

• Mid-Term Review Session
• Tonight: 7:00-8:00 pm in TPL 203
• No prepared remarks, so bring questions!

• Mid-term exam is Wednesday, October17
• During your normal lab session
• You’ll have 1 hour & 45 minutes (if you come on time!)
• Closed-book
• Covers Chapters 1-7 & 9 and all topics up through Linked

Lists
• A “sample” mid-term and study sheet are available online

• See Handouts & Problem Sets

2

http://cs.williams.edu/~cs136/handouts+problems.html

Last Time : Linear Structures

• Stack applications
• Arithmetic Expressions
• Postscript
• Mazerunning (Depth-First-Search)

4

Today: Linear Structures

• Stacks
• (Implicit) program call stack

• Queues
• Implementations Details
• Applications

• Iterators

5

Recursive “Pseudo-Code” Sketch
Boolean RecSolve(Maze m, Position current)

If (current eqauls finish) return true
Mark current as visited
nextß some unvisited neighbor of current (or null if none left)
While (next does not equal null && recSolve(m, next) is false)

nextß some unvisited neighbor of current(or null if none left)
Return next ≠ null

• To solve maze, call: Boolean recSolve(m, start)
• To prove correct: Induction on distance from current to
finish

• How could we generate the actual solution?

Method Call Stacks
• In JVM, need to keep track of method calls
• JVM maintains stack of method invocations (called

frames)
• Stack of frames

• Receiver object, parameters, local variables

• On method call
• Push new frame, fill in parameters, run code

• Exceptions print out stack
• Example: StackEx.java
• Recursive calls recurse too far: StackOverflowException

• Overflow.java

Stacks vs. Queues

• Stacks are LIFO (Last In First Out)
• Methods: push, pop, peek, empty
• Sample Uses:

• Evaluating expressions (postfix)
• Solving mazes

• Evaluating postscript

• JVM method calls

• Queues are FIFO (First In First Out)
• Another linear data structure (implements Linear interface)
• Queue interface methods: enqueue (add), dequeue (remove),

getFirst (get), peek (get)

tail head

Queues

• Examples:
• Lines at movie theater, grocery store, etc
• OS event queue (keeps keystrokes, mouse clicks,

etc, in order)
• Printers
• Routing network traffic (more on this later)

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed
public E peek(); //same as get()

}

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t declare E[]
int head;
int count; // better than storing tail...

}
QueueVector

class QueueVector<E> implements Queue<E> {
protected Vector<E> data;

}
QueueList

class QueueList<E> implements Queue<E> {
protected List<E> data; //uses a CircularList

}

All three of these also extend AbstractQueue

QueueArray

• Let�s look at an example…
• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

tail head

B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)
head points to front of

queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

After wrap around,
head > tail in some

cases!

public class queueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public queueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count<data.length,”Queue is full.");
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
Assert.pre(count>0,"The queue is empty.");
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public boolean empty() {
return count>0;

}

Tradeoffs:

• QueueArray:
• enqueue is O(1)
• dequeue is O(1)
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1) (but O(n) in worst case - ensureCapacity)
• dequeue is O(n)

• QueueList:
• enqueue is O(1) (addLast)
• dequeue is O(1) (CLL removeFirst)

Routing With Queues

Slides by Stephen Freund

The Network

moo.cs.williams.edu
(137.165.8.3) Network

www.google.com
(216.239.37.99)

137.165.8.3 216.239.37.99 "Search for ..."Message:

Routers

moo
(137.165.8.3)

www.google.com
(216.239.37.99)

137.165.8.3 216.239.37.99 "Search for ..."Message:

R1

R2

R3

R4

Routers

moo
(137.165.8.3)

google
(216.239.37.99)

R1

R2

R3

R4

Routing Algorithm
1. Receive message
2. Look up Destination Address

a) Deliver message to Dest
b) Forward to next Router

Router Internals

R1

R4

Lookup
Dest Addr

137.165.8.3 R1
216.239.37.99

R4
...

...

R1

R4

R2

Buffering Messages

• There may be delays
• Router receives messages faster than it

can process and send
• Some links are slower than others

• Common speeds: 10 Mbs, 100Mbs, 1Gbs.
• Wireless, satellite, infra-red, telephone line, ...

• Hardware problems
• Want to be able to handle short-term

congestion problems

Router Internals

R1

R4

Lookup
Dest Addr

R1

R4

137.165.8.3 R1
216.239.37.99

R4
...

...

Firewalls

R1

R4

Lookup
Dest Addr

R1

R4
good

bad discard

Check Source

Priority Scheduling

R1

R4

Lookup
Dest Addr

high

med

low

Priority of
Source/Dest

70%

20%

10%

Scheduler

Bandwidth Shaper

R1

R4

Lookup
Dest Addr

music

other

Classify
Message Scheduler

Limit(100)

Choosing The Best Route

moo
(137.165.8.3)

google
(216.239.37.99)

R1

R2

R3

R4

Choosing Routes

• Routers exchange information
periodically
• Attempt to route on "best" path to

destination
• Not easy to determine:

• Network congestion varies (evening vs. morning)
• Hardware added/removed or failures

• Dijkstra's algorithm (later)

Visiting Data from a Structure

• Write a method (numOccurs) that counts the
number of times a particular Object appears
in a structure

• Does this work on all structures (that we
have studied so far)?

public int numOccurs (List data, E o) {
int count = 0;
for (int i=0; i<data.size(); i++) {

E obj = data.get(i);
if (obj.equals(o)) count++;

}
return count;

}

Problems

• get() not defined on Linear structures (i.e.,
stacks and queues)

• get() is �slow� on some structures
• O(n) on SLL (and DLL)
• So numOccurs = O(n2) for linked lists

• How do we traverse data in structures in a
general, efficient way?
• Goal: data structure-specific for efficiency
• Goal: use same interface to make general

Recall : Structure Operations

• size()
• isEmpty()
• add()
• remove()
• clear()
• contains()

• But also
• Method for efficient data traversal

• iterator()

Iterators
• Iterators provide support for efficiently visiting all

elements of a data structure
• An Iterator:

• Provides generic methods to dispense values
• Traversal of elements : Iteration
• Production of values : Generation

• Abstracts away details of how elements are retrieved
• Uses different implementations for each structure

public interface Iterator<E> {
boolean hasNext() – are there more elements in iteration?
E next() – return next element
default void remove() – removes most recently returned value

• Default : Java provides an implementation for remove
• It throws an UnsupportedOperationException exception

A Simple Iterator
• Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;
int temp = current;
current = next;
next = temp + current;
return temp;

}

}

