CSCI 136
Data Structures &
Advanced Programming

Lecture |4
Fall 2018

Instructor: Bills

Announcements

e Mid-Term Review Session

e Monday (10/15), 7:00-8:00 pm in TPL 203
* No prepared remarks, so bring questions!

e Mid-term exam is Wednesday, October|7
* During your normal lab session
 You'll have | hour & 45 minutes (if you come on time!)
e Closed-book

e Covers Chapters |-7 & 9 and all topics up through Linked
Lists

* A “sample” mid-term and study sheet are available online
* See Handouts & Problem Sets

http://cs.williams.edu/~cs136/handouts+problems.html

Last Time

e QuickSort and Sorting Wrap-Up

e Linear Structures

e The Linear Interface (LIFO & FIFO)
e The AbstractLinear and AbstractStack classes

e Stack Implementations
* StackArray, StackVector, StackList,

Today: Linear Structures

e Stack applications
* Expression Evaluation
* PostScript: Page Description & Programming
* Mazerunning (Depth-First-Search)

Evaluating Arithmetic Expressions

 Computer programs regularly use stacks to
evaluate arithmetic expressions

e Example: x*y+z

* First rewrite as xy*z+ (we’ll look at this rewriting
process in more detail soon)

e Then:

* push x

* pushy

* * (pop twice, multiply popped items, push result)
* push z

* + (pop twice, add popped items, push result)

Converting Expressions

* We (humans) primarily use “infix" notation to
evaluate expressions

°© (xty)'z
e Computers traditionally used “postfix” (also called
Reverse Polish) notation

o xy+z*

e Operators appear after operands, parentheses not
necessary

* How do we convert between the two!?
e Compilers do this for us

Converting Expressions

 Example: x*y+z*w
 Conversion

|) Add full parentheses to preserve order of
operations

((<Fy)+(z"w))

2) Move all operators (+-*/) after operands
((xy*)(zw¥)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:
e Read the next token from input.
e If the token is a value, push it onto the stack.

* Else, the token is an operator that takes n arguments.
e (Itis known a priori that the operator takes n arguments.)
e If there are fewer than n values on the stack — error.

 Else, pop the top n values from the stack.
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

e The top value on the stack is the result of the calculation.
* Note that results can be left on stack to be used in future

computations:
e Eg: 32 *4 + followed by 5 / yields 2 on top of stack

Example

o ()W) — xyFzwH
e Evaluate:
e Push x
* Pushy
e Mult: Pop y, Pop x, Push x*y
* Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
e Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

Lab Preview: PostScript

PostScript is a programming language used for
generating vector graphics

e Best-known application: describing pages to printers

It is a stack-based language

* Values are put on stack

e Operators pop values from stack, put result back on
* There are numeric, logic, string values

e Many operators

Let’s try it: The ‘gs’ command runs a PostScript
Interpreter....

You’ll be writing a (tiny part of) gs in lab soon....

Lab Preview: PostScript

Types: numeric, boolean, string, array, dictionary
Operators: arithmetic, logical, graphic, ...
Procedures

Variables: for objects and procedures

PostScript is just as powerful as Java, Python, ...
* Not as intuitive
e Easy to automatically generate

Example: Recursive factorial procedure
/fact { dup 1 gt { dup 1 sub fact mul } if } def

Example: Drawing (see picture.ps)

Mazes

* How can we use a stack to solve a maze!?

e http://www.primaryobjects.com/maze/

* Properties of mazes:
* We model a maze as a rectangular grid of cells
e There is a start cell and one or more finish cells
e Goal: Find path of adjacent free cells from start to finish

* Strategy: Consider unvisited cells as “potential tasks”

e Use linear structure (stack) to keep track of current path
being explored

http://www.primaryobjects.com/maze/

Solving Mazes

* We'll use two objects to solve our maze:
* Position: Info about a single cell
* Maze: Grid of Positions

* General strategy:

* Use stack to keep track of path from start

* |f we hit a dead end, backtrack by popping
location off stack

e Mark discarded cells to make sure we don’t visit
the same paths twice

Backtracking Search

Try one way (favor north and east)
If we get stuck, go back and try a different way

We will eventually either find a solution or
exhaust all possibilities

Also called a “depth first search”

Lots of other algorithms that we will not
explore: http://www.astrolog.org/labyrnth/algrithm.htm

http://www.astrolog.org/labyrnth/algrithm.htm

A “Pseudo-Code” Sketch

// Initialization
Read cell data (free/blocked/start/finish) from file data

Mark all free cells as unvisited

Create an empty stack S
Mark; start cell as vistted and push it onto stack S

While (S isn t empry && top of S isn t finish cell)

current € S.peef() // current &s top of stack
If (current has an unvisited neighborx)

Marfx as visited ; S.push(x) /7' X is explored next
Lise S.pop()

Iftinish és on top of S then success else no solution

Is Pseudo-Code Correct!?

e Tools

* Concepts: adjacent cells; path; simple path; path length;
shortest path; distance between cells; reachable from cell

e Solving a maze: is finish reachable from start?

* Theorem: The pseudo-code will either visit finish or
visit every free cell reachable from start

* Proof: Prove that if algorithm does not visit finish then it
does visit every free cell reachable from start

* Do this by induction on distance of free cell from start
* Base case: distance 0. Easy

* Induction: Assume every reachable free cell of distance at
most k 2 @ FIrem start is visited. Prove for k+|

Is Pseudo-Code Correct!?

* Induction Hyp: Assume every reachable free cell of
distance at most k 2 @ FIrOM start is visited.

* Induction Step: Prove that every reachable free cell
of distance k+| from start is visited.
e Let c be a free cell of distance k+1| reachable from start

e Then c has a free neighbor d that is distance k from start
and reachable from start

e But then by induction, d is visited, so it was put on stack
e So each free neighbor of d is visited by algorithm

e Done!

Recursive “Pseudo-Code’” Sketch

Boolean RecSolve(Maze m, Position current)
If (current eqauls finish) recrn true
Mark current as vistted
next € some unvisited neighbor of current (or null if none left)
While (next does not equalnull && recSolve(m, next) is talse)
next € some unvisited neighbor of current(or null if none left)
Return next = null

e To solve maze, call: Boolean recSolve(m, start)

 To prove correct: Induction on distance from current to
finish

* How could we generate the actual solution?

Implementing A Maze Solver

* |teratively: Maze.java

* Recursively: RecMaze.java

* Recursive method keeps an implicit stack

e The method call stack

e Each recursive call adds to the stack

Implementation: Position class

* Represent position in maze as (X,y) coordinate

e class Position has several relevant methods:

* Find a neighbor

e Position getNorth(), getSouth(), getEast(),
getWest ()

* boolean equals()

e Check states of position
e boolean isVisited(), isOpen()

e Set states of position

e void visit(), setOpen(boolean b)

Maze class

Relevant Maze methods:
* Maze(String filename)
e Constructor; takes file describing maze as input
e void visit(Position p)
 Visit position p in maze
e boolean isVisited(Position p)

e Returns true iff p has been visited before
e Position start(), finish()

e Return start /finish positions
e Position nextAdjacent(Position p)

e Return next unvisited neighbor of p---or null if none
* boolean isClear(Position p)

e Returns true iff p is a valid move and is not a wall

Method Call Stacks

In [VM, need to keep track of method calls

JVM maintains stack of method invocations (called
frames)

Stack of frames
* Receiver object, parameters, local variables

On method call
e Push new frame, fill in parameters, run code

Exceptions print out stack
Example: StackEx.java

Recursive calls recurse too far: StackOverflowException
e Overflow.java

Recursive Call Stacks

public static long factorial(int n) {
if (n <= 1) // base case
return 1;

else

return n * factorial(n - 1);

public static void main(String args[]) {
System.out.println(factorial(3)};

