
CSCI 136
Data Structures &

Advanced Programming

Lecture 14
Fall 2018

Instructor: Bills

Announcements

• Mid-Term Review Session
• Monday (10/15), 7:00-8:00 pm in TPL 203
• No prepared remarks, so bring questions!

• Mid-term exam is Wednesday, October17
• During your normal lab session
• You’ll have 1 hour & 45 minutes (if you come on time!)
• Closed-book
• Covers Chapters 1-7 & 9 and all topics up through Linked

Lists
• A “sample” mid-term and study sheet are available online

• See Handouts & Problem Sets

2

http://cs.williams.edu/~cs136/handouts+problems.html

Last Time
• QuickSort and Sorting Wrap-Up
• Linear Structures

• The Linear Interface (LIFO & FIFO)
• The AbstractLinear and AbstractStack classes

• Stack Implementations
• StackArray, StackVector, StackList,

3

Today: Linear Structures

• Stack applications
• Expression Evaluation
• PostScript: Page Description & Programming
• Mazerunning (Depth-First-Search)

4

Evaluating Arithmetic Expressions

• Computer programs regularly use stacks to
evaluate arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+ (we’ll look at this rewriting

process in more detail soon)
• Then:

• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)

5

Converting Expressions

• We (humans) primarily use �infix� notation to
evaluate expressions
• (x+y)*z

• Computers traditionally used �postfix� (also called
Reverse Polish) notation
• xy+z*
• Operators appear after operands, parentheses not

necessary

• How do we convert between the two?
• Compilers do this for us

Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of
operations
((x*y)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw*)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp
• While there are input �tokens� (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

• (It is known a priori that the operator takes n arguments.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack.

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• The top value on the stack is the result of the calculation.
• Note that results can be left on stack to be used in future

computations:
• Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack

Example

• (x*y)+(z*w) → xy*zw*+
• Evaluate:

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

Lab Preview: PostScript

• PostScript is a programming language used for
generating vector graphics
• Best-known application: describing pages to printers

• It is a stack-based language
• Values are put on stack
• Operators pop values from stack, put result back on
• There are numeric, logic, string values
• Many operators

• Let’s try it: The ‘gs’ command runs a PostScript
interpreter….

• You’ll be writing a (tiny part of) gs in lab soon....

Lab Preview: PostScript

• Types: numeric, boolean, string, array, dictionary
• Operators: arithmetic, logical, graphic, …
• Procedures
• Variables: for objects and procedures
• PostScript is just as powerful as Java, Python, ...

• Not as intuitive
• Easy to automatically generate

• Example: Recursive factorial procedure
/fact { dup 1 gt { dup 1 sub fact mul } if } def

• Example: Drawing (see picture.ps)

Mazes

• How can we use a stack to solve a maze?
• http://www.primaryobjects.com/maze/

• Properties of mazes:
• We model a maze as a rectangular grid of cells
• There is a start cell and one or more finish cells
• Goal: Find path of adjacent free cells from start to finish

• Strategy: Consider unvisited cells as �potential tasks�
• Use linear structure (stack) to keep track of current path

being explored

http://www.primaryobjects.com/maze/

Solving Mazes

• We�ll use two objects to solve our maze:
• Position: Info about a single cell
• Maze: Grid of Positions

• General strategy:
• Use stack to keep track of path from start
• If we hit a dead end, backtrack by popping

location off stack
• Mark discarded cells to make sure we don’t visit

the same paths twice

Backtracking Search

• Try one way (favor north and east)
• If we get stuck, go back and try a different way
• We will eventually either find a solution or

exhaust all possibilities

• Also called a �depth first search�

• Lots of other algorithms that we will not
explore: http://www.astrolog.org/labyrnth/algrithm.htm

http://www.astrolog.org/labyrnth/algrithm.htm

A “Pseudo-Code” Sketch
// Initialization
Read cell data (free/blocked/start/finish) from file data
Mark all free cells as unvisited
Create an empty stack S
Mark start cell as visited and push it onto stack S

While (S isn’t empty && top of S isn’t finish cell)
currentß S.peek() // current is top of stack
If (current has an unvisited neighbor x)

Mark x as visited ; S.push(x) // x is explored next
Else S.pop()

If finish is on top of S then success else no solution

Is Pseudo-Code Correct?
• Tools

• Concepts: adjacent cells; path; simple path; path length;
shortest path; distance between cells; reachable from cell

• Solving a maze: is finish reachable from start?

• Theorem: The pseudo-code will either visit finish or
visit every free cell reachable from start

• Proof: Prove that if algorithm does not visit finish then it
does visit every free cell reachable from start
• Do this by induction on distance of free cell from start
• Base case: distance 0. Easy
• Induction: Assume every reachable free cell of distance at

most k ≥ 0 from start is visited. Prove for k+1

Is Pseudo-Code Correct?
• Induction Hyp: Assume every reachable free cell of

distance at most k ≥ 0 from start is visited.
• Induction Step: Prove that every reachable free cell

of distance k+1 from start is visited.
• Let c be a free cell of distance k+1 reachable from start

• Then c has a free neighbor d that is distance k from start
and reachable from start

• But then by induction, d is visited, so it was put on stack
• So each free neighbor of d is visited by algorithm

• Done!

Recursive “Pseudo-Code” Sketch
Boolean RecSolve(Maze m, Position current)

If (current eqauls finish) return true
Mark current as visited
nextß some unvisited neighbor of current (or null if none left)
While (next does not equal null && recSolve(m, next) is false)

nextß some unvisited neighbor of current(or null if none left)
Return next ≠ null

• To solve maze, call: Boolean recSolve(m, start)
• To prove correct: Induction on distance from current to
finish

• How could we generate the actual solution?

Implementing A Maze Solver

• Iteratively: Maze.java
• Recursively: RecMaze.java
• Recursive method keeps an implicit stack

• The method call stack

• Each recursive call adds to the stack

Implementation: Position class

• Represent position in maze as (x,y) coordinate
• class Position has several relevant methods:

• Find a neighbor
• Position getNorth(), getSouth(), getEast(),
getWest()

• boolean equals()
• Check states of position

• boolean isVisited(), isOpen()

• Set states of position
• void visit(), setOpen(boolean b)

Maze class
• Relevant Maze methods:

• Maze(String filename)
• Constructor; takes file describing maze as input

• void visit(Position p)
• Visit position p in maze

• boolean isVisited(Position p)
• Returns true iff p has been visited before

• Position start(), finish()
• Return start /finish positions

• Position nextAdjacent(Position p)
• Return next unvisited neighbor of p---or null if none

• boolean isClear(Position p)
• Returns true iff p is a valid move and is not a wall

Method Call Stacks
• In JVM, need to keep track of method calls
• JVM maintains stack of method invocations (called

frames)
• Stack of frames

• Receiver object, parameters, local variables

• On method call
• Push new frame, fill in parameters, run code

• Exceptions print out stack
• Example: StackEx.java
• Recursive calls recurse too far: StackOverflowException

• Overflow.java

Recursive Call Stacks

public static long factorial(int n) {
if (n <= 1) // base case

return 1;
else

return n * factorial(n - 1);
}

public static void main(String args[]) {
System.out.println(factorial(3)};

}

