CSCI 136
Data Structures &
Advanced Programming

Lecture |3
Fall 2018

Instructors: Bill?

Announcements

e Lab today!

e After mid-term we’ll have some “non-partner” labs

It’s Lab5 not Lab 4

e Mid-term exam is Wednesday, October |7

During your normal lab session

You'll have approximately | hour & 45 minutes (if you
come on time!)

Closed-book: Covers Chapters |-7 & 9, handouts, and all
topics up through Linked Lists

A “sample” mid-term and study sheet will be available
online

Review session: Monday, Oct. 15, 7:00-8:00pm TCL 203

Last Time

e Class extension
e Abstract base classes
e Concrete extension classes
e List: A general-purpose structure

* Implementing Lists with linked structures
 Singly and Doubly Linked Lists

Today

Linked List Wrap-Up

The structure5 hierarchy so far

Linear Structures
e The Linear Interface (LIFO & FIFO)
e The AbstractLinear and AbstractStack classes

Stack Implementations
* StackArray, StackVector, StackList,

Stack applications

* Expression Evaluation

* PostScript: Page Description & Programming
e Mazerunning (Depth-First-Search)

DoublyLinkedLists

Keep reference/links in both directions
e previous and next

DoublyLinkedListNode instance variables

 DLLN next, DLLN preyv, E value

Space overhead is proportional to number of elements
ALL operations on tail (including removelast) are fast!

Additional work in each list operation
e Example: add(E d, int index)

* Four cases to consider now: empty list, add to front, add to
tail, add in middle

public class DoublyLinkedNode<E>
{
protected E data;

protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,
DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

data = v;

nextElement = next;

if (nextElement != null) // point next back to me
nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null) // point previous to me

previousElement.nextElement = this;

DoublyLinkedList Add Method

public void add(int i, E o) {

Assert.pre((0 <= i) && (i <= size()),
"Index in range.");

if (1 == 0) addFirst(o);

else if (i == size()) addLast(0);

else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;

after = after.next();

i--;
}

// before, after refer to items in slots i-1 and i

// continued on next slide

DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size

public E remove(E value) {
DoublyLinkedNode<E> finger = head;

while (finger != null &&
lfinger.value() .equals(value))
finger = finger.next();
if (finger == null) return null;

// fix next field of previous element
if (finger.previous() != null)
finger.previous().setNext(finger.next());

else head = finger.next();

// fix previous field of next element

if (finger.next() != null)
finger.next().setPrevious(finger.previous());

else tail = finger.previous();

count--;

return finger.value();

CircularlyLinkedLists

Use next reference of last element to reference head of
list

Replace head reference with tail reference

Access head of list via tail.next

ALL operations on head are still fast : O(l) time
addlast() is now fast — O(l) time

Only modest additional complexity in implementation
Can “cyclically reorder” list by changing tail node
Question: What's a circularly linked list of size |?

Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

*A collection of interfaces that describe---but do not
implement---the functionality of one or more data
structures

*A collection of abstract classes provide partial
implementations of one or more data structures

e To factor out common code or instance variables

*A collection of concrete (fully implemented) classes to
provide full functionality of a data structure

AbstractList Superclass

abstract class AbstractList<E> implements List<E> {
public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removeLast() { return remove(size()-1); }

e AbstractList provides some of the list functionality

e Code is shared among all sub-classes (see Ch. 7 for more info)
public boolean isEmpty() { return size() == 0; }

e Concrete classes (SLL, DLL) can override the code implemented in AbstractList

e Abstract classes in general do not implement every method

* For example, size() is not defined although it is in the List interface
e Can’ tcreate an “AbstractList” directly

e Concrete list classes extend AbstractList, implementing missing functionality
class Vector extends AbstractList {
public int size() { return elementCount; }

The Structure5 Universe (almost)

Interface Abstract Class Class

List

3

AbstractList
/ A \

Vector SinglyLinkedList DoublyLinkedList

The StructureS Universe (so far)

Interface Abstract Class Class

Structure

List /
\ AbstractStructure

AbstractList
/ A \

Vector SinglyLinkedList DoublyLinkedList

The Structure> Universe (soon)

Interface Abstract Class Class
Structure
List Linear
A
AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Structures

* What if we want to impose access restrictions
on our lists?

* |.e., provide only one way to add and remove
elements from list

* No longer provide access to middle
* Key Examples: Order of removal depends on
order elements were added
e LIFO: Last In First Out
* FIFO: First In First Out

Examples

* FIFO: First In — First Out (Queue)
* Line at dining hall

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)
* Stack of trays at dining hall

* Java Virtual Machine stack

The Structure5 Universe (next)

Interface Abstract Class Class
Structure
List Linear
A
AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Interface

e How should it differ from List interface?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* Inherits all of the Structure interface methods
e add(E value) — Add a value to the structure.

* E remove(E o) — Remove value o from the structure.
— But this is awkward---why?

* int size(), isEmpty(), clear(), contains(E value), ...

* Adds

e E get() — Preview the next object to be removed.
* E remove() — Remove the next value from the structure.
* boolean empty() — same as isEmpty()

Linear Structures

* Why no “random access !

e |.e., no access to middle of list

* More restrictive than general List structures

* Less functionality can result in
e Simpler implementation

* Greater efficiency

* Approaches
* Use existing structures (Vector, LL), or

* Use underlying organization, but simplified

20

Stacks

e Examples: stack of trays or cups
e Can only take tray/cup from top of stack
* What methods do we need to define!
e Stack interface methods
* New terms: push, pop, peek

* Only use push, pop, peek when talking about stacks
e Push = add to top of stack

* Pop = remove from top of stack
* Peek = look at top of stack (do not remove)

21

Notes about Terminology

When using stacks:
° pop = remove
e push = add
* peek = get
In Stack interface, pop/push/peek methods call

add/remove/get methods that are defined in Linear
interface

But “add” is not mentioned in Stack interface (it is
inherited from Linear)

Stack interface extends Linear interface
* Interfaces extend other interfaces
e Classes implement interfaces

22

Stack Implementations

* Array-based stack

* int top, Object data][]
e Add/remove from index top

* Vector-based stack
* Vector data
e Add/remove from tail

e List-based stack

e SLL data
e Add/remove from head

+ all operations are O(|)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(|)
+/— O(n) space overhead
(no “wasted” space) 2

Stack Implementations

e structure5.StackArray

* int top, Object data]]
e Add/remove from index top

e structureb.StackVector
* Vector data
o Add/remove from tail

e structureb.StackList

e SLL data
e Add/remove from head

+ all operations are O(|)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(|)
+/— O(n) space overhead
(no “wasted” space) 24

Summary Notes on The Hierarchy

* Linear interface extends Structure
* add(E val), empty(), get(), remove(), size()
e AbstractlLinear (partially) implements Linear

* AbstractStack class (partially) extends AbstractlLinear
 Essentially introduces “stack-ish” names for methods
e push(E val) is add(E val), pop() is remove(), peek() is get()

* Now we can extend AbstractStack to make

“concrete” Stack types
e StackArray<E>: holds an array of type E; add/remove at high end
e StackVector<E>: similar, but with a vector for dynamic growth
e StackList<E>: A singly-linked list with add/remove at head

* We implement add, empty, get, remove, size directly
* push, pop, peek are then indirectly implemented 25

The StructureS Universe (so far)

Interface Abstract Class Class
Structure
List Linear
A
AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

