CSCI 136
Data Structures &
Advanced Programming

Lecture |10

Fall 2018
Instructors: Bill & Bill

Last Time

e Mathematical Induction

* For algorithm run-time and correctness

e More About Recursion

e Recursion on arrays; helper methods

Today s Outline

* Finish Binary Search & Induction

* Basic Sorting
e Bubble, Insertion, Selection Sorts

* Including proofs of correctness

 The Comparable Interface

Example: Binary Search

* Given an array a[] of positive integers in increasing
order, and an integer X, find location of x in a[].

e Take “indexOf” approach: return -1 if x is not in aJ[]
protected static int recBinarySearch(int a[], int value,

int low, int high) {
if (low > high) return -1;

else {
int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison

else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);

else //search lower half
return recBinarySearch(a, value, low, mid - 1);

Binary Search takes O(log n) Time

Can we use induction to prove this?

e Claim: If n = high — low + 1, then recBinSearch
performs at most ¢ (1+ log n) operations, where ¢ is
twice the number of statements in recBinSearch

e Base case:n =1: Then low = high so only ¢
statements execute (method runs twice) and ¢ <
c(1+log 1)

e Assume that claim holds for some n 2 1, does it
hold for n+1? [Note: n+1 > 1, so low < high]

* Problem: Recursive call is not on n——it’ s on n/2.

e Solution: We need a better version of the PMI---.

Mathematical Induction

Principle of Mathematical Induction (Strong)

Let P(0), P(1), P(2), ... Be a sequence of
statements, each of which could be either true or
false. Suppose that, for some k 2 0
1. P(0), P(1), ..., P(k) are true, and
2. For all n 2 k, whenever P(1), P(2), ..., P(n) are true,
then so is P(n+1).

Then all of the statements are true!

Binary Search takes O(log n) Time

Try again now:

e Assume that for some n 2 1, the claim holds for a//
k £ n, does claim hold for n+1?

e Yes! Either

e x = a[mid], so a constant number of operations are
performed, or

e RecBinSearch is called on a sub—array of size at most
n/2, and by induction, at most c(1 + log (n/2)) operations
are performed.

e This gives a total of at most ¢ + c(1 + log(n/2)) = 2¢c + ¢ log(n/2))
= 2¢c + c(log n — log 2) = c(1 + log n) statements

Notes on Induction

e Whenver induction is needed, strong induction can
be used

e The numbering of the propositions doesn’ t need to
start at O

e The number of base cases depends on the problem
at hand

e Enough are needed to guarantee that the smallest non—
base case can be proven using only the base cases

Bubble Sort

e First Pass: e Third Pass:
e (51329)—>(15329) e (12359)->(12359)
e (15329)>(13529) e (12359)->(12359)
* (13529)>(13259) * Fourth Pass:
* (13259)—>(13259) e (12359)->(12359)

e Second Pass:
« (13259)—>(13259)
e (13259)—>(12359)
e (12359)—>(12359)

http://www.youtube.com/watch?v=lyZQPjUT5B4

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

Sorting Intro: Bubble Sort

Simple sorting algorithm that works by repeatedly
stepping through the list to be sorted, comparing
two items at a time and swapping them if they are in
the wrong order

Repeated until no swaps are needed

Gets its name from the way larger elements "bubble
to the end of the list

Time complexity!?

o O(n?)

Space complexity?

e O(n) total (no additional space is required)

Let’s write it!

Sorting Intro: Insertion Sort

http://www.visualgo.net/sorting

Sorting Intro : Insertion Sort

Simple sorting algorithm that works by building a
sorted list one entry at a time

Less efficient on large lists than more advanced
algorithms

Advantages:
e Simple to implement and efficient on small lists
 Efficient on data sets which are already mostly sorted

Time complexity
* O(n?)
Space complexity
* O(n)

Sorting Intro : Selection Sort

http://www.visualgo.net/sorting
(demo is “min” version)

I3 27 5 |6
I3 16 5 27
I3 5 16 27
5 3 1l 16 27
3 5 1l 16 27

Time Complexity:
* O(n?)
Space Complexity:
* O(n)

http://www.visualgo.net/sorting

Sorting Intro : Selection Sort

e Similar to insertion sort

* Noted for its simplicity and performance advantages
when compared to complicated algorithms

* The algorithm works as follows:
* Find the maximum value in the list
e Swap it with the value in the last position

* Repeat the steps above for remainder of the list (ending at
the second to last position)

Some Skill Testing!

Selection sort uses two utility methods

Uses a swap method

private static void swap(int[]A, int i, int J) {
int temp = a[i];
A[1] = A[J];
A[]J] = temp;

}
And a max-finding method
// Find position of largest value in A[0 .. last]
public static int findPosOfMax(int[] A, int last) {
int maxPos = 0; // A wild guess
for(int i = 1; i <= last; i++)

if (A[maxPos] < A[i]) maxPos= i;

return maxPos;

Some Skill Testing!

An lterative Selection Sort
public static void selectionSort(int[] A) {
for(int i = A.length - 1; i>0; i--)
int big= findPosOfMax(A,1i);
swap(A, i, big);

}

A Recursive Selection Sort (just the helper method)
public static void recSSHelper(int[] A, int last) {
if(last == 0) return; // base case

int big= findPosOfMax(A, last);
swap(A,big,last);
recSSHelper (A, last-1);

Some Skill Testing!

* Prove: recSSHelper (A, last) sorts elements
A[O]...A[last].
* Assume that maxLocation(A, last) is correct
* Proof:
* Base case: last = 0.

* Induction Hypothesis:
e For k<last, recSSHelper sorts A[0]...A[k].

* Prove for last:
* Note: Using Second Principle of Induction (Strong)

20

Some Skill Testing!

After call to findPosOfMax(A, last):
e ‘big’ is location of largest A[O..last]

That value is swapped with Allast]:
e Rest of elements are A[0]..Allast—1].

Since last — 1< last, then by induction

e recSSHelper(A, last—1) sorts A[0]..Allast—1].
Thus A[0]..Allast—1] are in increasing order
e and Allast—1] £ Allast].

So, A[0]---Allast] are sorted.

21

Making Sorting Generic

We need comparable items

Unlike with equality testing, the Object class
doesn’t define a “compare()” method &

We want a uniform way of saying objects can
be compared, so we can write generic
versions of methods like binary search

Use an interface!

Two approaches

 Comparable interface
 Comparator interface

Comparable Interface

* Java provides an interface for comparisons between objects

* Provides a replacement for “<*“ and “>” in recBinarySearch

e Java provides the Comparable interface, which specifies a
method compareTo()

e Any class that implements Comparable must provide compareTo()

public interface Comparable<T> {

//post: return < 0 if this smaller than other
return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);

Comparable Interface

* Many Java-provided classes implement Comparable
e String (alphabetical order)
* Wrapper classes: Integer, Character, Boolean
e All Enum classes

* We can write methods that work on any type that
implements Comparable

e Example: RecBinSearch.java and BinSearchComparable.java

compareTo in Card Example

We could write

public class CardRankSuit implements
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {
if (this.getSuit() != other.getSuit())
return getSuit().compareTo(other.Suit());
else
return getRank().compareTo(other.getRank());

}

// rest of code for the class....

}

Comparable & compareTo

The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

Other Java-provided structures can take advantage of objects
that implement Comparable

e See the Arrays class in java.util

e Example JavaArraysBinSearch

Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,
e x.compareTo(y) == 0 exactly when x.equals(y) == true

Note that Comparable limits user to a single ordering
The syntax can get kind of dense

e See BinSearchComparable.java : a generic binary search method
* And even more cumbersome....

