
CSCI 136
Data Structures &

Advanced Programming

Fall 2018
Instructors

Bill Lenhart & Bill Jannen

2

Administrative Details

• Class roster: Who’s here?
• And who’s trying to get in?

• Handout: Class syllabus
• Lecture location: TPL 205
• Lab: Wed 12-2 or 2-4 (go to assigned lab!)
• Lab location: TCL 217a (Lenhart) & 216 (Jannen)
• Lab entry code: I hope you memorized it!
• Course Webpage:

http://cs.williams.edu/~cs136/index.html

http://cs.williams.edu/~cs136/index.html

3

Today�s Outline

• Course Preview

• Course Bureaucracy

• Java (re)fresher–Part 1

4

Why Take CS136?

• To learn about:
• Data Structures

• Effective ways to store and manipulate data

• Advanced Programming
• Use structures and techniques to write programs that

solve interesting and important problems

• Basics of Algorithm Analysis
• Measuring algorithm complexity
• Determining algorithm correctness

5

Squad* Goals
• Identify basic data structures

• list, stack, array, tree, graph, hash table, and more

• Implement these structures in Java
• Learn how to evaluate and visualize data structures

• Linked lists and arrays both represent lists of items
• Different representations of data
• Different algorithms for manipulating/accessing/storing data

• Learn how to design larger programs that are easier to
modify, extend, and debug

• Have fun!

*Bill L has a teenage daughter....

6

Common Themes

1. Identify data for problem
2. Identify questions to answer about data
3. Design data structures and algorithms to answer

questions correctly and efficiently (Note: not all
correct solutions are efficient, and vice versa!)

4. Implement solutions that are robust, adaptable, and
reusable

Example: Shortest Paths in Networks

7

8

Finding Shortest Paths

• The data: road segments
• Road segment: Source, destination, length (weight)

• The question
• Given source and destination, compute the shortest path

from source

• The algorithm: Dijkstra’s Algorithm
• The data structures (spoiler alert!)
• Graph: holds the road network in some useful form
• Priority Queue: holds not-yet-inspected edges
• Also uses: Lists, arrays, stacks, ...

• A quick demo….

9

Course Outline

• Java review
• Basic structures

• Lists, vectors, queues, stacks

• Advanced structures
• Graphs, heaps, trees, dictionaries

• Foundations (throughout semester)
• Vocabulary
• Analysis tools
• Recursion & Induction
• Methodology

10

Syllabus Highlights

• How to contact us
• Bill Lenhart (TPL 304)

• Office hours: Tues & ThursM/T/Th 2:00-3:50pm; T: 9:00-10:00
• mailto:wlenhart@williams.edu

• Bill Jannen (TCL 306)
• Office hours:
• mailto:jannen@cs.williams.edu

• Textbook
• Java Structures: Data Structures in Java for the Principled

Programmer, Ö7 Edition (by Duane Bailey)
• Take one: You’re already paying for it!

• Weekly labs, problem sets, mid-term & final exams....

mailto:wlenhart@williams.edu
mailto:mailto:jannen@cs.williams.edu

11

Honor Code and Ethics

• College Honor Code and Computer Ethics
guidelines can be found here:
• https://sites.williams.edu/honor-system/
• https://oit.williams.edu/policies/ethics/

• You should also know the CS Department
computer usage policy.
• https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

• If you are not familiar with these items, please
review them.

• We take these things very seriously…

https://sites.williams.edu/honor-system/
https://oit.williams.edu/policies/ethics/
https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

12

Your Responsibilities

• Come to lab and lecture on time
• Read assigned material before class and lab

• Bring textbook to lab (or be prepared to use PDF)
• Bring paper/pen(cil) to lab for brain-storming, …

• Come to lab prepared
• Bring design docs for program
• 1 Prof + 1TA == help for you: take advantage of this

• Do NOT accept (prolonged) confusion! Ask
questions

• Your work should be your own. Unsure? Ask!
• Participate

13

Accounts and Passwords

• Mandatory: Before the first lab
• Talk to Mary Bailey about your CS account

• Mary manages our systems. She will be available

• Today: 9/7: 1:00 - 2:15 pm
• Monday, 9/10: 9:30 - 11:30 am , 3:00 - 4:30 pm
• Tuesday, 9/11: 10:30 - noon, 3:00 - 4:30 pm
• Wednesday, 9/12: 9:30 - 11:30 am

• Her office is in the 3rd floor CS lab (TCL 312)
• Get this sorted out before lab on Wednesday!

14

Why Java?

• There are lots of programming languages…
• C, Pascal, C++, Java, C#, Python

• Java was designed in 1990s to support Internet
programming

• Why Java?
• It’s easier (than predecessors like C++) to write correct

programs
• Object-oriented – good for large systems
• Good support for abstraction, extension, modularization
• Automatically handles low-level memory management
• Very portable

15

Why Not BlueJ?

• Learn to use Unix
• Command-line tools
• Emacs standard unix-based editor

• Emphasis will move from user interface
programming to data structuring and efficient
algorithm design

• Take advantage of opportunity to become
Unix-savvy!

16

Java Review (Crash Course)

17

Java

• Variable types
• Primitive: int, double, boolean, ...
• Object (class-based): String (special), Point, Jbutton, ...
• Arrays

18

Java

• Statements
• int x; // declare variable x
• int x = 3; // declare & initialize x
• x = x + 1;
• x++;

• if (x > 3) { … } else { … }

• while (x < 2) { … }

• for (int i = 0; i < x; i++) { … }

19

Java
• Comments

• // this is a single-line comment
• /* this can span multiple lines */

• Aside: good comments make code readable
• Explain the “why” not the “what”
• State assumptions or non-obvious logic
return x+1; // returns sum of x+1
while (y < 2) /* continue as long

* as y is < 2
*/

20

Primitive Types
• Provide numeric, character, and logical values

• 11, -23, 4.21, ‘c’, false

• Can be associated with a name (variable)
• Variables must be declared before use

int age; // A simple integer value
float speed; // A number with a ‘decimal’ part
char grade; // A single character
bool loggedIn; // Either true or false

• Variables can be initialized when declared
int age = 21;
float speed = 47.25;
char grade = ‘A’;
bool loggedIn = true;

21

Array Types
• Holds a collection of values of some type
• Can be of any type

int[] ages; // An array of integeras
float[] speeds; // An array of floats
char[] grades; // An array of characters
bool[] loggedIn; // Either true or false

• Arrays can be initialized when declared
int[] ages = { 21, 20, 19, 19, 20 };
float[] speeds = { 47.25, 3.4, -2.13, 0.0 };
char[] grades = { ‘A’, ‘B’, ‘C’, ‘D’ };
bool[] loggedIn = { true, true, false, true };

• Or just created with a standard default value
int[] ages = new int[15]; // array of 15 0s

“Everything is a class”

• Typically put the code for each class in a file with
the same name as the class
• The Person class’ code would be in Person.java

• The method ’main’ is the entry point to a Java
program
• main has a specific method signature:

public static void main(String[] args)

• In grand CS tradition, we will write and run
Hello.java

22

23

Simple Sample Programs

• Hello.java
• Write a program that prints “Hello” to the

terminal.
• Now let’s run it.

• Of Note:
• public static void main(String[] args){...}

• System.out is of type PrintStream
• javac and java commands

