
Sample Midterm CSCI 136: Fall 2018
October 12

This is a closed book exam. You have one hour and 45 minutes to complete the exam. All intended
answers will fit in the space provided. You may use the back of the preceding page for additional space
if necessary, but be sure to mark you answers clearly.

Be sure to give yourself enough time to answer each question— the points should help you manage
your time.

In some cases, there may be a variety of implementation choices. The most credit will be given to
the most elegant and efficient solutions.

Problem Points Description Score

1 14 True/False

2 10 Static

3 26 Creating a Set class

4 15 Recursion on Lists

5 12 Big-O

6 13 Searching and Sorting

Total 90

I have neither given nor received aid on this examination.

Signature:

Name:

1

1. (14 points) . True/False
Justify each answer with a sentence or two.
a. Two instances of class Association in the structure package are equal if and only if

their keys are equal, regardless of their values.

b. An instance variable declared as protected can be accessed by any method of the class in
which it is declared.

c. A binary search can locate a value in a sorted Vector in O(log n) time.

d. A binary search can locate a value in a sorted SinglyLinkedList in O(log n) time.

e. If a method that has no preconditions is called, all of that method’s postconditions should be
guaranteed to be true when the method returns.

f. The Unix command cp /path/to/directory changes your current working directory to
/path/to/directory.

g. Instance variables can be specified in an interface file.

2

2. (10 points) . Static
Consider the following Java program:

class Container {
protected int count;
protected static int staticCount;

public Container(int initial) {
count = initial;
staticCount = initial;

}

public void setValue(int value) {
count = value;
staticCount = value;

}

public int getCount() {
return count;

}

public int getStaticCount() {
return staticCount;

}
}

class WhatsStatic {

public static void main(String[] args) {
Container c1 = new Container(17);
System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());

Container c2 = new Container(23);
System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());
System.out.println("c2 count=" +c2.getCount()+

", staticCount=" + c2.getStaticCount());

c1.setValue(99);
System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());
System.out.println("c2 count=" +c2.getCount()+

", staticCount=" + c2.getStaticCount());

c2.setValue(77);
System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());
System.out.println("c2 count=" +c2.getCount()+

", staticCount=" + c2.getStaticCount());
}

}

Answer the following questions (next page) about this code.

3

a. What will the output be when the program is run (java WhatsStatic)? Assume no excep-
tions occur. (4 points)

b. What memory is allocated for Containers c1 and c2 at the time the line c1.setValue(99)
is executed? Show any existing local variables and instance variables. (6 points)

4

3. (26 points) . Creating a Set class
In this problem you are to design a Java interface and class for a data structure which repre-
sents sets of Strings. As usual for sets, no repeated elements are allowed. Thus, the collec-
tion "Propser", "Anya", "Lisa", "Karl", "Isabella" is a legal set, but "Bill", "Duane",
"Bill" is not. This data structure will have two methods:

• void insert(String myString) adds myString to the set.
• boolean contains(String myString) returns a boolean value indicating if myString

is an element of the set.

a. Write a legal Java interface called StringSetInterface for this data structure. Include
preconditions and postconditions for the methods. (6 points)

5

Name:
b. Suppose we decide to implement StringSetInterface by a class in which a singly-linked list
holds the elements. Write the definition of this class. This should be a full and legal Java class
definition with all method bodies filled in. Don’t forget to declare instance variables, include a
constructor, and use qualifiers such as public and protected when appropriate. You need not
repeat your pre- and post- conditions from part a. Please call your class StringSet. (10 points)

6

Name:
c. If StringSet is implemented as in part b, what would the worst-case time complexity be for
the insert operation when the set has n elements? (Use “Big O” notation.) (4 points)

d. Suppose we design an alternative implementation in which the set is represented by a Vector<String>
called strVec. What is the worse-case complexity of insert with this representation? (6 points)

7

4. (15 points) . Recursion on Lists
(15 points) Consider the following class, ReversibleList, that extends the SinglyLinkedList
class by adding a method for reversing the list.

public class ReversibleList<E> extends SinglyLinkedList<E> {

public ReversibleList() {
super();

}

public void reverse() {
// Post: list is reversed.
if (head != null)

head = recReverse(head);
}

private static SinglyLinkedListNode<E> recReverse(SinglyLinkedListNode<E> current) {
// Pre: current is not null.
// Post: list headed by current is reversed; and first Node in that list is returned.
if (current.next() == null) { // Single-node list

return current;
} else {

SinglyLinkedListNode<E> newHead = recReverse(current.next()); // Explain
// current.next() now points to final node in reversed list!
current.next().setNext(current); // Explain
current.setNext(null); // Explain
return newHead;

}
}

}

a. What is the running time of reverse() (3 points)?

8

b. Prove using mathematical induction that your answer to part a is correct. (12 points)

9

5. (12 points) . Big-O
Growth of functions. Using “Big O” notation, give the rate of growth for each of these functions.
Your answer should represent the tightest bound possible and should be in as simple a form as
possible. Justify your answers. (3 points each, 12 total)

a. f(n) = n2 + 17n+ 2001

b. f(n) = 3n+ 5 log2 n

c. f(n) = 7n when x is odd, f(n) = n
7 when x is even.

d. f(n) = 5n3 for n < 23, f(n) = 37 otherwise.

10

6. (13 points) . Searching and Sorting

(a) (5 points) SelectionSort and Insertion both take O(n2) in the worst case. However, they have
different best-case running times. Explain why this difference occurs; include a description
of examples that have best-case performance.

(b) (8 points) When applied to an array, a MergeSort has three phases:

Split: Find the middle element of the array
Recursively Solve: MergeSort each half of the array
Combine: Merge the two sorted halves of the array into a single sorted array

As we’ve seen, the Split phase takes O(1) time while the Combine phase takes O(n) time.
Suppose we want to implement MergeSort for a SinglyLinkedList data structure (with tail
pointers). Describe what would be involved in implementing the Split and Combine phases
and how much time (in the O() worst-case sense) each phase would take. Would such a
MergeSort still take O(n log n) time? Why?

11

