CSCI 136: Fall 2018
Handout PS 3
Problem Set 3 Due: Friday., Nov. 9 at start of class

Instructions: We encourage you to do all of these problems, but please hand in only the ones labeled ”"Hand In”!

Trees
(BDOINES) et e e e Hand In

A node in a tree that is not a leaf node is called an internal node. For this problem, we’ll say that a binary tree is dense
if each internal node has exactly 2 children.

Prove that the number of internal nodes in a non-empty dense binary tree is one less than the number of leaves. [Hint:
Induction]

Note: The encoding tree produced by Huffman’s algorithm is dense, and so this proves that the number of nodes in
the tree is proportional to the size of the alphabet being encoded—a claim made, but not proven, in class.

(O POITIS) « + e e e e e Practice
The height method in the BinaryTree class looks like this

public int height ()
{

if (isEmpty()) return -1;

return 1 + Math.max (left.height (), right.height());
}

Prove that this method correctly determines the height of the binary tree. [Hint: Induction—which kind?]

(BPOINES) .ot e e e Hand In
The isFull method in the BinaryTree class looks like this

public boolean isFull()

{
if (isEmpty()) return true;
if (left () .height () !'= right().height()) return false;
return left () .isFull() && right () .isFull();

Prove that this method correctly determines whether the tree is full

(BDOINS) e e Hand In

The levelOrder method for traversing a BinaryTree with root t looks like this

public static <E> void levelOrder (BinaryTree<E> t) {
if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> g = new QueuelList<BinaryTree<E>>();
g.enqueue (t); // put root of tree in queue

while (!g.isEmpty()) {
BinaryTree<E> next = g.dequeue();
touch (next) ;
if (!next.left () .isEmpty ()) g.enqueue (next.left ());

if (!'next.right () .isEmpty ()) g.enqueue(next.right());

Prove that this method runs in time proportional to the number of nodes in the tree with root t. [That is, it runs in
O(n) time where n is the number of nodes in the tree.]

(O POIIS) v e e e e e e Practice

Prove that the PreOrder iterator BTPreOrderlterator visits the nodes of a binary tree in the same order as the preorder
traversal method described in class. [The code for both of these can be found in the Lecture20 slide deck.]

