
CSCI 136
Data Structures &

Advanced Programming

Lecture 9
Fall 2017

Instructors: Bills

Administrative Details

• Lab 3 Today!
• You may work with a partner
• Come to lab with a plan!
• Try to answer questions before lab

2

Last Time

• Note: Storing null values in Lists
• More on Doubly-Linked List

• Lab this week: Doubly Linked Lists with dummy nodes

• Abstract Classes and Inheritance
• Return of the Card Classes!

• The Structure5 Universe to date

3

Today

• Measuring Growth
• Big-O

• Introduction to Recursion

Measuring Computational Cost

Consider these two code fragments…
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return “Found it!”;

…and…

for (int i=0; i < arr.length; i++)

for (int j=0; j < arr.length; j++)

if(i !=j && arr[i] == arr[j]) return ”Match!”;

How long does it take to execute each block?
5

Measuring Computational Cost

• How can we measure the amount of work
needed by a computation?
• Absolute clock time

• Problems?
– Different machines have different clocks
– Too much other stuff happening (network, OS, etc)
– Not consistent. Need lots of tests to predict

future behavior

6

Measuring Computational Cost

• A better way: Counting computations
• Count all computational steps?
• Count how many “expensive” operations were

performed?
• Count number of times “x” happens?

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
• 64 vs 65? 100 vs 105? Does it really matter??

7

An Example
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• ”if” makes it hard

• Idea: Overcount: assume “if” block always runs
• Overcounting gives upper bound on run time
• Can also undercount for lower bound

• Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4

Measuring Computational Cost

• Rather than keeping exact counts, we want to
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68
• n, not 4(n-1) + 4

• We want to make comparisons without
looking at details and without running tests

• Avoid using specific numbers or values

• Look for overall trends

9

Measuring Computational Cost

• How does algorithm scale with problem size?
• E.g.: If I double the size of the problem instance, how

much longer will it take to solve:
• Find maximum: n – 1 à (2n) – 1 (≈ twice as long)
• Bubble sort: n(n-1)/2 à 2n(2n – 1)/2 (≈ 4 times as long)
• Subset sum: 2n-1 à 22n-1 (2n times as long!!!)
• Etc.

• We will also measure amount of space used by an
algorithm using the same ideas….

10

Function Growth

Consider the following functions, for x ≥ 1
• f(x) = 1
• g(x) = log2(x) // Reminder: if x=2^n, log2(x) = n
• h(x) = x
• m(x) = x log2(x)
• n(x) = x2

• p(x) = x3

• r(x) = 2x

11

Function Growth

1

log2(x)

x

x log2(x)

x2

2x

2 4 6 8 10

-20

20

40

60

Function Growth & Big-O

• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• a0nk + a1nk-1 + a2nk-2 + … ak is roughly nk

• The key is to find the most significant or
dominant term

• Ex: limx→∞ (3x4 -10x3 -1)/x4 = 3 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

13

Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there
exist positive constants c and n0 such that

|f(n)| ≤ c· g(n) for all n ³ n0

• g is “at least as big as” f for large n
• Up to a multaplicative constant c!

• Example:
• f(n) = n2/2 is O(n2)
• f(n) = 1000n3 is O(n3)
• f(n) = n/2 is O(n)

14

Determining “Best” Upper Bounds

• We typically want the smallest upper bound when we
estimate running time

• Example: Let f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n) (see next slide)
• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
• We care about c and n0 in practice, but focus on size

of g when designing algorithms and data structures

15

What’s n0? Messy Functions

• Example: Let f(n) = 3n2 - 4n +1. f(n) is O(n2)
• Well, 3n2 - 4n +1 ≤ 3n2 +1 ≤ 4n2, for n ≥ I
• So, for c = 4 and n0 = 1, we satisfy Big-O definition

• Example: Let f(n) = nk, for any fixed k ≥ 1. f(n) is O(2n)
• Harder to show: Is nk ≤ c 2n for some c > 0 and large enough n?
• It is if and only if log2(nk) ≤ log2(2n), that is, iff k log2(n) ≤ n.
• That is iff k ≤ n/log2(n). But n/log2(n) à∞ as n à ∞
• This implies that for some n0 on n/log2(n) ≥ k if n ≥ n0

• Thus n ≥ k log2(n) for n ≥ n0 and so 2n ≥ nk

16

Input-dependent Running Times
• Algorithms may have different running times for

different input values
• Best case (typically not useful)

• Sort already sorted array in O(n)
• Find item in first place that we look O(1)

• Worst case (generally useful, sometimes misleading)
• Don’t find item in list O(n)
• Reverse order sort O(n2)

• Average case (useful, but often hard to compute)
• Linear search O(n)
• QuickSort random array O(n log n) ß We’ll sort soon

17

Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• O(1): size(), capacity(), isEmpty(), get(i), set(i),

firstElement(), lastElement()
• O(n): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : O(log2(n))
• Time to copy array: O(n)
• O(log2(n)) + O(n) is O(n)

18

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a multiple of d
• At sizes 0, d, 2d, … , n/d.

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of
∑ 𝑐𝑘𝑑%/'
()* = 𝑐𝑑	∑ 𝑘%/'

()* = 𝑐𝑑	(%
'
)(%
'
+ 1)/2 = 𝑂(𝑛4)

19

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a power of 2
• At sizes 0, 1, 2, 4, 8 … 25678 %

• Copying an array of size 2k takes c 2k steps for some
constant c, giving a total of

∑ 𝑐2(5678 %
()* = 𝑐	 ∑ 2(5678 %

()* = 𝑐	(25678 %9*−1)= 𝑂(𝑛)

• Very cool!

20

