CSCI 136
Data Structures &
Advanced Programming

Lecture 8
Fall 2017

Instructors: Bills

Administrative Details

e Lab 3 is now available!
e Fun with doubly-linked lists!

e Fun with partners!
* What does it mean to work collaboratively?

* Will be modifying existing code in significant ways
* Make a plan, and bring questions to class

* Try to answer thought questions before lab

Last Time

* Vector Implementation continued

e Condition Checking

* Pre- and post-conditions, Assertions List: A
general-purpose structure

* Implementing Lists with linked structures
 Started discussing Singly Linked Lists

Reviewing Important SLL Methods

* How would we implement:
e get(int index), set(E d, int index)
e add(E d, int index), remove(int index)

* removelast() is just remove(size() - 1)
e removeFirst() is just remove(0)

e Left as an exercise:
* contains(E d)
* clear()

* Note: E is value type

Get and Set

public E get(int index) {

Assert.pre(index < size() - 1, “Index out of range”);
// or should we return null in above case?

SLLN finger = head;

for (int i=0; i<index; i++){

finger = finger.next();

}

return finger.value();

public E set(E d, int index) {
Assert.pre(index < size() -
// Same question!
SLLN finger = head;

for (int i=0; i<index; i++){

finger = finger.next();
}
E old = finger.value();
finger.setValue(d);
return old;

“Index out of range”);

Remove

public E remove(int index) {

if(index >= size()) return null;
E old;
if (index==0) { // Special case: remove the head

old = head.value();
head = head.next();
count--;

return old;

}
else {
SLLN finger = head;
for (int i=0; i<index - 1; i++) { //stop one before index
finger = finger.next();
}
old = finger.next.value();
finger.setNext(finger.next().next());
count--;
return old;
}

Add

public void add(E d, int index)

if(index > size()) return null;

E old;
if (index==0) { addFirst(d); }
else if (index==size()) { addLast(d);
else {
SLLN finger = head;
SLLN previous = null;
for (int 1=0; i<index; 1i++)

previous = finger;

finger = finger.next();

}
SLLN elem = new SLLN(d,

previous.setNext (elem);
count++;

{

finger);
// new “ith”

}

item added after i-1

Linked Lists Summary

Recursively defined structures for storing data

Easy to add to the front of the list
* Modifying tail/middle of list is not quite as efficient

Components of SLL (SinglyLinkedList)
e SLLN head, int elementCount

Components of SLLN (Node):
e SLLN next, E value

Vectors vs. SLL

e Compare performance of
* size
* addlast, removelast, getLast
 addFirst, removeFirst, getFirst
e get(int index), set(E d, int index)
* remove(int index)
e contains(E d)

* remove(E d)

More Linked List Summary

* More control over space use than Vectors
* No empty slots like vectors

e But keep extra reference for each value

* overhead proportial to list length
— (but this is constant and predictable)

e SLL operations are predictable
* No hidden costs like Vector.ensureCapacity()
* Avg and worst case are always the same

Food for Thought:
SLL Improvements to Tail Ops

* |n addition to Node head, int elementCount,
add Node tail reference to SLL

* Result
e addlast and getlLast are fast

* removelast is not improved

* We need to know element before tail so we can reset tail pointer

e Side effects

* We now have three cases to consider in method
implementations: empty list, head == tail, head != tail

e Think about addFirst(E d) and addLast(E d)

CircularlyLinkedLists

Use next reference of last element to reference head of
list

Replace head reference with tail reference

Access head of list via tail.next

ALL operations on head are fast!

addLlast() is still fast

Only modest additional complexity in implementation

Can “cyclically reorder” list by changing tail node
Question: What'’s a circularly linked list of size |?

Rest of Today: DLLs & Inheritance

Note: Storing null values in Lists
Details of Doubly-Linked Lists

e Lab this week: Doubly Linked Lists with dummy nodes

Abstract Classes and Inheritance
e Return of the Card Classes!

The Structureb Universe to date

DoublylLinkedLists

Keep reference/links in both directions
e previous and next

DoublyLinkedListNode instance variables
* DLLN next, DLLN prev, E value

Space overhead is proportional to number of element

S

ALL operations on tail (including removelast) are fast!

Additional complexity in each list operation
e Example: add(E d, int index)

* Four cases to consider now: empty list, add to front, add to
tail, add in middle

public class DoublyLinkedNode<E>
{
protected E data;

protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,
DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

data = v;

nextElement = next;

if (nextElement != null) // point next back to me
nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null) // point previous to me
previousElement.nextElement = this;

DoublylLinkedList Add Method

public void add(int i, E o) {

Assert.pre((0 <= 1) && (i <= size()),
"Index in range.");

if (i == 0) addFirst(o);

else if (i == size()) addLast(o);

else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;

after = after.next();

i--;
}

// before, after refer to items in slots i-1 and i

// continued on next slide

DoublylLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size

// make after and before value point to new value
// Note: These lines aren’t needed---why?
before.setNext(current);

after.setPrevious(current);

public E remove(E value) {
DoublyLinkedNode<E> finger = head;

while (finger != null &&
!finger.value().equals(value))
finger = finger.next();
if (finger == null) return null;

// fix next field of previous element

if (finger.previous() != null)
finger.previous().setNext(finger.next());

else head = finger.next();

// fix previous field of next element

if (finger.next() != null)
finger.next().setPrevious(finger.previous());

else tail = finger.previous();

count--;

return finger.value();

Class Specialization

o Classes can extend other classes
* |nherit fields and method bodies

* By extending other classes, we can create
specialized sub-classes

 Java supports class extension/specialization

* Java enforces type-safety: Objects behave
according to their type

e Some checks are made at compile-time
* Some checks are made at run-time

o Weé'll first use this feature to factor out code

19

Abstract Classes

Note: All of our Card implementations code
toString() in identical fashion.

It’s good to be able to “factor out” common code so
that it only has to be maintained in one place

Abstract classes to the rescue....

An abstract class allows for a partial implementation
We can then extend it to a complete implementation
Let’s do this with our cards.

e Examine CardAbstract.java....

20

Abstract Classes

Notes from CardAbstract class example
e CardAbstract implements Card (partially)
e CardAbstract is declared to be abstract

* It contains the implementation of toString()
How do the full implementations (CardRankSuit, etc) change!
* They are declared to extend CardAbstract
e They don’t need to say “implements Card”

 They don’t contain the toString() method
* They inherit that method from CardAbstract
e But could override that method if desired

21

Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

e Suppose we wanted to add a point value to each of
the playing cards in CardRankSuit

e We extend that class
class CardRankSuitPoints extends CardRankSuit {.. }

e This new class can now contain additional instance
variables and methods

e Let’s look at the code for CardRankSuitPoints.java. ¥

CardRankSuitPoints Notes

Constructor calls CardRankSuit constructor using super
We can override methods---e.g.,, toString()

Can use a CardRankSuitPoints object wherever we use a
Card

e But! Can only use new features (getPoints()) if the
object is declared to be of type CardRankSuitPoints

CardRankSuitPoints cl = new CardRankSuitPoints (
Rank.ACE, Suit.CLUBS, 4);

int pl = cl.getPoints(); // Legal

Card c2 = new CardRankSuitPoints (Rank.ACE,
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card
int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

Java enforces type-safety: An variable of type X can only be

assigned a value of type X or of a type that extends X »

The Card Classes Hierarchy

Interface

Abstract Class

AbstractCard

e

24

Access Levels

e public, private, and protected
variables/methods

e What' s the difference?

e public —accessible by all classes, packages,
subclasses, etc.

* protected — accessible by all objects in same class,
same package, and all subclasses (stay tuned)

* private — only accessible by objects in same class
* Generally want to be as “strict” as possible

25

Access Modifiers

Class | Package | Subclass | World
public Y Y Y Y
protected Y Y Y N
none Y Y N N
private Y N N N

A package is a named collection of classes.

« Structured is Duane’s package of data structures

« Java.util is the package containing Random,
Scanner and other useful classes

« There’s a single “unnamed” package

Duane’s Structure Hierarchy

The structure5 package has a similar structure

*A collection of interfaces that describe---but do not
implement---the functionality of one or more data
structures

*A collection of abstract classes provide partial
implementations of one or more data structures

e To factor out common code or instance variables

*A collection of concrete (fully implemented) classes to
provide full functionality of a data structure

27

AbstractList Superclass

abstract class AbstractList<E> implements List<E> {
public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removelLast() { return remove(size()-1); }

e AbstractList provides some of the list functionality

e Code is shared among all sub-classes (see Ch. 7 for more info)
public boolean isEmpty() { return size() == 0; }

e Concrete classes (SLL, DLL) can override the code implemented in AbstractList
e Abstract classes in general do not implement every method
* For example, size() is not defined although it is in the List interface
e Can’ tcreate an “AbstractList” directly
e Other lists extend AbstractList and implement missing functionality as needed

class Vector extends AbstractList {
public int size() { return elementCount; }

28

The Structure5 Universe (almost)
Interface Abstract Class -

List

3

AbstractList

s et i

The Structure5 Universe (so far)

Interface Abstract Class Class

Structure

List

AbstractStructure

e

AbstractList
/ A \

Vector SinglyLinkedList DoublyLinkedList

