
CSCI 136
Data Structures &

Advanced Programming

Fall 2017
Lecture 33

The 2070567s

Administrative Details
Reminders
•No lab this week
•Problem set 3

• Due Wednesday at start of class

•Final exam
• Thursday, December 14 at 9:30 in TBL 112
• Covers everything, with strong emphasis on post-midterm
• Study guide, sample exam will be posted
• We will have a review (during reading period)

Topics Covered

• Vectors (and arrays)
• Complexity (big O)
• Recursion + Induction
• Searching
• Sorting
• Linked Lists (SLL & DLL)

• Stacks
• Queues
• Iterators
• Bitwise operations

• Comparables/Comparators
• OrderedStructures
• Binary Trees

• Priority Queues
• Heaps
• Binary Search Trees
• Graphs
• Maps/Hashtables

Last Time

• toString() and printing Graphs
• Graph applications (more in Ch 16)
• Prim’s algorithm for MCST

Today’s Outline

• Finish Prim’s algorithm
• Maps (#2 Interface of all time)
• Revisit Naïve implementation from Lab 2

• structure5.Hashtable (finally)
• Hash functions
• “Load factor”
• Collisions and how to handle them

• You should also read Ch 15 for more info

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

MCST

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

Visit A, then
Add all outgoing edges to priority queue

A-B: 3
A-E: 4
A-F: 7

MCST

A

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

Pop elements from Priority queue until one
takes us somewhere ‘new’. Add to MCST

A-B: 3
A-E: 4
A-F: 7

MCST

A-B: 3

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

A-E: 4
B-C: 5
A-F: 7
B-F: 8

A-B: 3

MCST

Visit B, then
Add all outgoing edges to priority queue

B

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

A-E: 4
B-C: 5
A-F: 7
B-F: 8

A-B: 3
A-E: 4

MCST

Pop elements from Priority queue until one
takes us somewhere ‘new’. Add to MCST

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

E-D: 2
B-C: 5
E-F: 5
A-F: 7
B-F: 8

A-B: 3
A-E: 4

MCST

Visit E, then
Add all outgoing edges to priority queue

E

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

E-D: 2
B-C: 5
E-F: 5
A-F: 7
B-F: 8

A-B: 3
A-E: 4
E-D: 2

MCST

Pop elements from Priority queue until one
takes us somewhere ‘new’. Add to MCST

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

D-C: 4
B-C: 5
E-F: 5
A-F: 7
B-F: 8
D-F: 8

A-B: 3
A-E: 4
E-D: 2

MCST

Visit D, then
Add all outgoing edges to priority queue

D

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

D-C: 4
B-C: 5
E-F: 5
A-F: 7
B-F: 8
D-F: 8

A-B: 3
A-E: 4
E-D: 2
D-C: 4

MCST

Pop elements from Priority queue until one
takes us somewhere ‘new’. Add to MCST

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

B-C: 5
E-F: 5
C-F: 6
A-F: 7
B-F: 8
D-F: 8

A-B: 3
A-E: 4
E-D: 2
D-C: 4

MCST

Visit C, then
Add all outgoing edges to priority queue

C

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

B-C: 5
E-F: 5
C-F: 6
A-F: 7
B-F: 8
D-F: 8

A-B: 3
A-E: 4
E-D: 2
D-C: 4

MCST

Pop elements from Priority queue until one
takes us somewhere ‘new’. Add to MCST

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

C-F: 6
A-F: 7
B-F: 8
D-F: 8

A-B: 3
A-E: 4
E-D: 2
D-C: 4
E-F: 5

MCST

Visit F, then
Add all outgoing edges to priority queue

F

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

C-F: 6
A-F: 7
B-F: 8
D-F: 8

A-B: 3
A-E: 4
E-D: 2
D-C: 4
E-F: 5

MCST

Pop elements from Priority queue until one
takes us somewhere ‘new’.

Prim’s Algorithm

A

B C

D

E

F

5

46

8
8

3

7

4
5

2

Priority
Queue

A-B: 3
A-E: 4
E-D: 2
D-C: 4
E-F: 5

MCST

Priority queue is empty. We are done!

Prim’s Algorithm

Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop
• Add neighbors to p. queue: O(deg(v) log |E|)
• Iterator operations are O(1)
• Adding an edge to the priority queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from p. queue is O(log |E|) time
• All other operations are O(1) time

Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O(deg(v) log |E|) time

• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2 ,so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once

• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log |V|)
• Typically written as O(m log n)

• Where m= |E| and n = |V|

Maps and Hash Tables

Map Interface

Methods for Map<K, V>
• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(V val) - true iff val exists at

least once in map
• V get(K key) - get value associated with key
• V put(K key, V val) - insert mapping from key to val,

returns value replaced (old value) or null
• V remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map

Map Interface

Other methods for Map<K,V>:
•void putAll(Map<K,V> other) - puts all key-value pairs
from Map other in map
•Set<K> keySet() - return set of keys in map
•Set<Association<K,V>> entrySet() - return set of key-
value pairs from map
•Structure<V> valueSet() - return set of values
•boolean equals() - used to compare two maps
•int hashCode() - returns hash code associated with values in
map (stay tuned…)

public class Dictionary {

public static void main(String args[]) {
Map<String, String> dict = new Hashtable<String, String>();
…
dict.put(word, def);
…
System.out.println("Def: " + dict.get(word));

}

}

Dictionary.java

What’s missing from the Map API that a dictionary needs?
successor(key), predecessor(key)

These are very hard to implement in a hashtable!

Simple Implementation: MapList

• Uses a SinglyLinkedList of Associations as underlying
data structure
• Think back to Lab 2, but a List instead of a Vector

• How would we implement get(K key)?
• How would we implement put(K key, V val)?

MapList.java
public class MapList<K, V> implements Map<K, V>{

//instance variable to store all key-value pairs
SinglyLinkedList<Association<K,V>> data;

public V put (K key, V value) {
Association<K,V> temp =

new Association<K, V> (key, value);
// Association equals() just compares keys
Association<K,V> result = data.remove(temp);

data.addFirst(temp);
if (result == null)

return null;
else

return result.getValue();
}

}

Simple Map Implementation

• What is MapList’s running time for:
• containsKey(K key)?
• containsValue(V val)?

• Bottom line: not O(1)!

Search/Locate Revisited

• How long does it take to search for objects in
Vectors and Lists?
• O(n) on average

• How about in BSTs?
• O(log n)

• Can this be improved?
• Hash tables can locate objects in roughly O(1) time!

• (we will cover two reasons that O(1) performance is a fuzzy claim)

Example from Bailey

“We head to a local appliance store to pick up a new freezer. When we
arrive, the clerk asks us for the last two digits of our home telephone
number! Only then does the clerk ask for our last name. Armed with that
information, the clerk walks directly to a bin in a warehouse of hundreds
of appliances and comes back with the freezer in tow.”

• Thoughts?
•What is Key? What is Value?
•Are names evenly distributed?
•Are the last 2 phone digits evenly distributed?

Hashing in a Nutshell

• Assign objects to “bins” based on key
• When searching for object, go directly to

appropriate bin (and ignore the rest)
• If there are multiple objects in bin, then search

for the correct one
• Important Insight: Hashing works best when

objects are evenly distributed among bins
• Phone numbers are randomly assigned, last names

are not (there were a lot of Smiths in Smithsville!)

Implementing a HashTable

• How can we represent bins?
• Slots in array (or Vector, but arrays are faster)
• Initial size of array is a prime number

• How do we find a key’s bin number?
• We use a hash function that converts keys into

integers
• In Java, all Objects have public int hashCode()

• Hashing function is one way: key ➡ fingerprint
• Hashing function is deterministic

hashCode() rules

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

Implementing HashTable

• How do we add objects to the array?
• int hash = Math.abs(o.hashCode());
array[hash % array.length] = o;

• Does this always work?

• Collisions make life hard
• Two approaches
• Linear probing (open addressing)
• External chaining

Linear Probing

• Inserting: If a collision occurs at a given bin, just scan forward
(linearly) until an empty slot is available
• We will call a contiguous region of full bins a run

• If you are looking for a target KV-pair, scan linearly through
the run until you find target or reach the end of the run

• Let’s implement put(key, val) and get(key)…

First Attempt: put(K)
public V put (K key, V value) {

int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null) {

data[bin] = new Association<K,V>(key,value);
return null;

}
if (slot.getKey().equals(key)) { // already exists!

V old = slot.getValue();
slot.setValue(value);
return old;

}
bin = (bin + 1) % data.length;

}
}

First Attempt: get(K)

public V get (K key) {
int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null)

return null;

if (slot.getKey().equals(key))
return slot.getValue();

bin = (bin + 1) % data.length;
}

}

Linear Probing
• In NaiveProbing.java, we:

• Specify a dummy hash function: index of first letter of word
• Set the initial array size = 8
• Add “air hockey” to hash table
• Add “doubles ping pong”
• Add “quidditch”

• What happens when we remove “air hockey”, and then
lookup “quidditch”?
• Our run was broken up!
• We need a “placeholder” for removed values to preserve runs…

• See Hashtable.java in structure5

Linear Probing

• Downsides of linear probing?
• What if array is almost full?

• Loooong runs for every lookup…
• Items out of place if we don’t re-index after removing

(placeholders are correct, but they defer work)

• How can we avoid these problems?
• Keep all values that hash to same bin in a
Collection
• Usually a SLL

• External chaining “chains” objects with the same
hash value together

External Chaining

• Instead of runs, we store a list in each bin

data[][][][][][][][]

(K,V)

(K,V)

(K,V)

(K,V)

(K,V)

(K,V) (K,V)

(K,V)

(K,V)

(K,V)

• Everything that hashes to bini goes into listi

• get(), put(), and remove() only need to check one
slot’s list

• No placeholders!

Probing vs. Chaining
What is the performance of:
• put(K, V)

• LP: O(1 + run length)
• EC: O(1 + chain length)

• get(K)
• LP: O(1 + run length)
• EC: O(1 + chain length)

• remove(K)
• LP: O(1 + run length)
• EC: O(1 + chain length)

• Runs/chains are important. Ho do we
control cluster/chain length?

